Computational Biology Program

Computational Biology Graduate Program

Computational Biology is an interdisciplinary science at the interface of biology, chemistry, medicine, mathematics, and computer science. Its goal is development and application of computational approaches to studies of life processes and improvement of human health. The Computational Biology Graduate Program recruits students with bachelor's or master's degrees who made a choice to pursue a career in computational biology. The Ph.D. degree in Computational Biology requires successful completion of formal courses and demonstration of accomplishments in basic research, qualifying examinations, scientific writing, and formal presentations of research data.

Courses

BINF 701. Bioinformatics I. 5 Hours.
First semester of a two-semester course in bioinformatics and computational biology. Topics include basic concepts of bioinformatics and molecular modeling, bioinformatics databases, computational tools and modeling methods, protein sequence and structure alignment, conformational analysis, secondary structure determination, tertiary structure modeling (homology, threading, ab initio, molecular dynamics and Monte Carlo simulations, protein folding and dynamics), as well as students presentations of material from current papers in the field of study and their own on-going research for discussion and critique. Prerequisite: College introductory biochemistry (no requirement for specific courses), math, and computer courses or concurrent enrollment in such courses and consent of instructor. LEC.

BINF 702. Bioinformatics II. 5 Hours.
Second semester of a two-semester course in bioinformatics and computational biology. Topics include protein quaternary structure modeling (protein-protein/DNA/small ligand docking, binding, computer-aided drug design), protein structure-function relationships, biological membranes (structure and function of integral membrane proteins, protein-membrane and protein-protein interactions in membranes), phylogenetic trees, modeling of genome-wide protein interaction networks based on structure, sequence, experiment and data-mining, as well as students presentations of material from current papers in the field of study and their own on-going research for discussion and critique. Prerequisite: BINF 701. LEC.

BINF 703. Advanced Computational Biology I. 5 Hours.
This is the first semester of an intensive two-semester course in Computational Biology, aimed at second-year graduate students. Topics include graph theory, systems biology, mathematical and computational modeling of complex systems, synthetic biology and protein design. Students will gain a mastery of cutting-edge topics in Computational Biology through lectures, careful reading of current literature, and advanced individual research projects. Prerequisite: BINF 701 and BINF 702, or consent of instructor. LEC.

BINF 704. Advanced Computational Biology II. 5 Hours.
This is the second semester of an intensive two-semester course in Computational Biology, aimed at second-year graduate students. Topics include graph theory, systems biology, mathematical and computational modeling of complex systems, synthetic biology and protein design. Students will gain a mastery of cutting-edge topics in Computational Biology through lectures, careful reading of current literature, and advanced individual research projects. Prerequisite: BINF 703. LEC.

BINF 709. Topics in: 1-3 Hours.
Advanced courses on special topics in Bioinformatics, given as need arises, including lectures, discussions, readings, or laboratory. Students may select sections according to their special interests. LEC.

BINF 999. Doctoral Dissertation. 1-12 Hours.
Original research that is to be incorporated into a PhD dissertation. THE.