The University of Kansas

Pharmacy

Graduation requirements and regulations for every academic program are provided in this catalog. Degree requirements and course descriptions are subject to change. In most cases, you will use the catalog of the year you entered KU (see your advisor (http://www.advising.ku.edu) for details). Other years' catalogs (http://catalog.ku.edu/archives)

Doctor of Pharmacy (p. 1)
Doctor of Pharmacy (http://catalog.ku.edu/pharmacy/doctor-pharmacy)

Medicinal Chemistry (http://catalog.ku.edu/pharmacy/medicinal-chemistry)
Master of Science in Medicinal Chemistry (http://catalog.ku.edu/pharmacy/medicinal-chemistry/ms)
Doctor of Philosophy in Medicinal Chemistry (http://catalog.ku.edu/pharmacy/medicinal-chemistry/phd)

Neurosciences (http://catalog.ku.edu/pharmacy/neurosciences)
Master of Science in Neurosciences (http://catalog.ku.edu/pharmacy/neurosciences/ms)
Doctor of Philosophy in Neurosciences (http://catalog.ku.edu/pharmacy/neurosciences/phd)

Pharmaceutical Chemistry (http://catalog.ku.edu/pharmacy/pharmaceutical-chemistry)
Master of Science in Pharmaceutical Chemistry (http://catalog.ku.edu/pharmacy/pharmaceutical-chemistry/ms)
Doctor of Philosophy in Pharmaceutical Chemistry (http://catalog.ku.edu/pharmacy/pharmaceutical-chemistry/phd)

Pharmacology and Toxicology (http://catalog.ku.edu/pharmacy/pharmacology-toxicology)
Master of Science in Pharmacology and Toxicology (http://catalog.ku.edu/pharmacy/pharmacology-toxicology/ms)
Doctor of Philosophy in Pharmacology and Toxicology (http://catalog.ku.edu/pharmacy/pharmacology-toxicology/phd)

Pharmacy Practice (http://catalog.ku.edu/pharmacy/pharmacy-practice)
Master of Science in Pharmacy Practice (http://catalog.ku.edu/pharmacy/pharmacy-practice/ms)

The School of Pharmacy

Since its founding in 1885, the University of Kansas School of Pharmacy (http://pharmacy.ku.edu) has been a leader in pharmacy education. Since 1996, the school has only offered the Doctor of Pharmacy degree as the entry-level practice degree. The curriculum gives the student the knowledge, skills, and ability required of the pharmacy practitioner; it is comprehensive and produces a highly competent general practitioner.

Approximately 60 full-time faculty members teach in the undergraduate professional Doctor of Pharmacy and graduate programs. Three departments (Pharmacology and Toxicology, Medicinal Chemistry, and Pharmaceutical Chemistry) offer Master of Science and Doctor of Philosophy degrees. The Department of Pharmacy Practice offers the master’s degree.

Both the undergraduate and graduate divisions have outstanding national and international reputations based on the excellence and productivity of the faculty. KU is consistently ranked in the top 5 among colleges/schools of pharmacy that receive National Institutes of Health research funding. KU’s School of Pharmacy was awarded more than $22 million in research grants and contracts from the NIH in fiscal year 2011.

The School of Pharmacy is fully accredited by the Accreditation Council for Pharmacy Education (https://www.acpe-accredit.org), 135 S. LaSalle St, Suite 4100, Chicago, IL 60603-4810, (312) 664-3575, info@acpe-accredit.org, the official accrediting body for American schools of pharmacy.

Professional Program

The School of Pharmacy offers a 6-year Doctor of Pharmacy (http://catalog.ku.edu/pharmacy/doctor-pharmacy) program. The 2-year pre-pharmacy portion of the program may be taken at any accredited 2- or 4-year college.

After acceptance into the School of Pharmacy students completing the first 2 years of the Doctor of Pharmacy professional degree program (3rd and 4th year of college) are awarded a Bachelor of Science in Pharmaceutical Studies. Students completing the remaining 5th and 6th professional years are awarded the Doctor of Pharmacy (Pharm.D.) degree. These degree programs are available to students on both the Lawrence and Wichita campuses.

University Honors Program

The school encourages qualified students entering KU as freshman to participate in the University Honors Program (http://www.honors.ku.edu).

Graduate Programs

The School of Pharmacy offers graduate programs through the departments of

- Medicinal Chemistry (http://catalog.ku.edu/pharmacy/medicinal-chemistry),
- Pharmaceutical Chemistry (http://catalog.ku.edu/pharmacy/pharmaceutical-chemistry),
- Pharmacology and Toxicology (http://catalog.ku.edu/pharmacy/pharmacology-toxicology), and
- Pharmacy Practice (http://catalog.ku.edu/pharmacy/pharmacy-practice).

The Department of Pharmacy Practice offers the Master of Science degree. The other 3 departments offer both the M.S. and the Ph.D. with majors in their respective disciplines. Programs in Neurosciences (http://catalog.ku.edu/pharmacy/neurosciences) are offered in cooperation with KU Medical Center.

Requirements for admission and baccalaureate preparation vary with each department and are discussed separately. Address inquiries and correspondence about graduate studies to the program or department of interest.

Undergraduate Scholarships and Financial Aid

Financial Aid and Scholarships (http://affordability.ku.edu/steps/index.shtml), located at the KU Visitor Center at 1502 Iowa St, Lawrence, KS 66045-7518, 785-864-4700, financialaid@ku.edu, administers grants,
loans, and other need-based financial aid. In recent years, about $29 million has been processed annually through the office, including about $2 million annually in short-term loans. Prospective students should contact Financial Aid and Scholarships. Some financial aid programs have application deadlines as early as January 15. The earlier an application is received and the student’s file is completed, the better the chance of obtaining financial aid.

For information about scholarships from KU and various outside agencies based on academic merit, diversity, major, and residence, visit Scholarship Information for KU Students (http://affordability.ku.edu/cs/index.shtml).

School of Pharmacy Financial Aid
The School of Pharmacy, in cooperation with Financial Aid and Scholarships (http://affordability.ku.edu/steps/index.shtml), offers financial assistance to pharmacy students. Applications are received in the dean’s office according to an announced schedule each year. Awards are based on merit and need. Assistance is available for both entering and continuing students.

Graduate Fellowships and Assistantships
For information about graduate assistantships, contact the School of Pharmacy (http://pharmacy.ku.edu). Visit the Graduate Studies website for information about funding opportunities (http://www.graduate.ku.edu/funding-opportunities) for graduate students at KU. Financial Aid and Scholarships (http://affordability.ku.edu/steps/index.shtml) administers grants, loans, and need-based financial aid.

Undergraduate University Regulations
For information about university regulations, see Regulations (http://catalog.ku.edu/regulations) or visit the University of Kansas Policy Library (http://www.policy.ku.edu).

Academic Misconduct
Instructors detecting academic misconduct must act in accordance with the School of Pharmacy (http://www.policy.ku.edu/Pharmacy/academic_and_professional_conduct_policy) and Faculty Senate Rules and Regulations (http://www.policy.ku.edu).

Students experiencing difficulties or problems with a particular course or having complaints or grievances about a particular instructor are urged to discuss the problem in a timely fashion with the instructor. If the student feels awkward or uncomfortable doing this, he or she should see the chair of the instructor’s department, or if necessary, an associate dean. The chair or dean brings the matter to the instructor’s attention, preserving the student’s anonymity, if so requested.

Credit/No Credit
A Credit/No Credit option is available to all degree-seeking undergraduates. You may enroll in one course a semester under the option, if the course is not in your major or minor. For more information, visit the KU Policy Library (https://documents.ku.edu/policies/governance/USRR.htm#art2sect2).

Warning: Certain undesirable consequences may result from exercising the option. Some schools, scholarship committees, and honorary societies do not accept this grading system and convert grades of No Credit to F when computing grade-point averages.

Exemptions and Petitions
A student may gain an exemption from introductory pre-pharmacy courses by successfully completing the Advanced Placement or College Level Examination Program examinations or by other recognized means. Only the exemption is allowed. A total of 208 credit hours of college-level course work is still required for the PharmD degree. Students who have completed high school physics with a grade of B or higher need not take college-level physics. In meritorious cases, the department offering a specific course may waive course prerequisites. Students whose educational goals would be better served by courses other than those prescribed in the normal curriculum may petition the academic standing committee for permission to make appropriate course substitutions.

Graduation with Distinction and Highest Distinction
Students who rank in the upper 10 percent of their graduating class graduate with distinction. The upper third of those awarded distinction graduate with highest distinction. Grade-point averages are determined on the basis of credit hours taken while enrolled in the School of Pharmacy. The list is compiled each spring and includes July, December, and May graduates.

Health Insurance and Immunizations
The School of Pharmacy requires students to provide proof of health insurance and professional insurance coverage and immunizations for MMR, hepatitis B, varicella, and tetanus, and a current TB skin test.

Honor Roll
Students with grade-point averages of 3.5 who have completed at least 12 professional hours are recognized on the honor roll or dean’s list in fall and spring. An Honor Roll notation appears on the transcript.

Maximum Community College Credit Allowed
The School of Pharmacy allows a maximum of 68 credit hours from any accredited college or university toward completion of the PharmD degree.

Prerequisites and Corequisites
In meritorious cases, course prerequisites may be waived by the department offering the course. Waiver is not granted if the prerequisite course was taken and failed.

Probation
Probation
A student will be placed on academic probation if they:

1. fail to attain a 2.5 grade point average (2.25 for the class of 2016) of professional coursework in any semester, or whose overall professional course grade-point average falls below 2.5.
 a. A student falling below the minimum grade point average of 2.5* will be required to develop and submit an individualized remediation plan to their Academic Faculty Advisor and the Chair of the Academic Standings committee, Senior Associate Dean Gene Hotchkiss.
2. fail an introductory or advanced pharmacy practice experience.
a. A student failing either an IPPE or APPE will be required to develop an individualized remediation plan with the Assistant Dean for Experiential Education and the Associate Deans for Administration and Academic Affairs.

3. fails to comply with programmatic requirements in a timely manner.

Suspension

A student who fails or does not make timely progress in a course or courses while a student in the School of Pharmacy may be placed on suspension. Additionally, a student who fails to comply with the School conduct policy, or academic and/or programmatic requirements may be placed on suspension.

Dismissal

Students will be dismissed from school if they:

1. fail to attain a 2.5 grade-point-average (2.25 for graduating class of 2016) in all courses or in professional courses for any semester while on probation.
2. receive a grade of “F” in 40 percent or more of the courses taken during any semester (including semesters in which they are enrolled in only one course).
3. fail an individual course twice.
4. fail two advanced pharmacy practice experiences (APPEs).
5. are placed on probation or suspended for a second academic semester for failure to comply with programmatic requirements.

Petitions

Students dismissed for poor scholarship may file a written petition with the academic standing committee for reinstatement. The committee’s decision is final. The committee normally takes one of the following actions:

1. The student is allowed to enroll, often with specific recommendations regarding strategies for restoring good academic standing.
2. The committee may deny the petition.

Courses Taken Outside the School

Students on probation or in nondegree-student status may take courses outside the School of Pharmacy, or at other institutions, to improve the grade-point average. Prior approval is required, and in general, only courses that count toward graduation are honored.

Return to Good Standing

Students are returned to good standing when the overall pharmacy grade-point average reaches 2.5 (2.25 for graduating class of 2016).

Required Work in Residence

Of the last 30 hours preceding graduation, 24 hours must be in residence at the KU School of Pharmacy.

Terminal-Year Courses

A student cannot enroll in the principal terminal-year pharmacy practice experiential rotations unless he or she has a grade-point average in professional courses of at least 2.5 (2.25 for graduating classes of 2015 and 2016) and has completed all didactic course work required for the degree.

Graduate University Regulations

For information about university regulations, see Regulations (http://catalog.ku.edu/regulations) or visit the University of Kansas Policy Library (http://www.policy.ku.edu).

Academic Forgiveness

The school does not participate in academic forgiveness.

Academic Misconduct

Students experiencing difficulties or problems with a particular course or having complaints or grievances about a particular instructor are urged to discuss the problem in a timely fashion with the instructor. If the student feels awkward or uncomfortable doing this, he or she should see the chair of the instructor’s department, or if necessary, the dean. The chair or dean brings the matter to the instructor’s attention, preserving the student’s anonymity, if so requested.

Instructors detecting academic misconduct must act in accordance with the School of Pharmacy and Faculty Senate Rules and Regulations (http://www.policy.ku.edu).

Credit/No Credit

The Credit/No Credit option is not authorized for graduate students’ enrollments, including, but not limited to, courses taken to fulfill the research skills requirements, undergraduate deficiencies, etc.

Graduation with Distinction and Highest Distinction

Students who rank in the upper 10 percent of their graduating class graduate with distinction. The upper third of those awarded distinction graduate with highest distinction. Grade-point averages are determined on the basis of credit hours taken while enrolled in the School of Pharmacy. The list is compiled each spring and includes July, December, and May graduates.

Health Insurance and Immunizations

The School of Pharmacy requires students to provide proof of health insurance and professional insurance coverage and immunizations for MMR, hepatitis B, varicella, and tetanus, and a current TB skin test.

Requirements to Practice Pharmacy in Kansas

A license is required to practice pharmacy. State boards of pharmacy grant licenses to students who successfully pass board examinations. In all states, eligibility to take board examinations requires graduation from an accredited school of pharmacy and completion of required experiential training. The Kansas State Board of Pharmacy (http://www.kansas.gov/pharmacy) requires graduates of schools of pharmacy to indicate any current, pending, or previous convictions, fines, violations, or disciplinary action that may affect their eligibility to take the licensing examination. Pharmacists generally may transfer their licenses from a state in which they completed the entire examination to another state, provided the 2 states had similar practical experience requirements at the time the pharmacist was licensed by examination. Most pharmacists find it useful to maintain a license in the state where they were licensed by
examination. By doing so, they can preserve their eligibility to transfer to another state.

Pharmacists in Kansas must renew their licenses biennially by paying the required fee and providing proof that they have completed the required 30 clock hours of continuing education.

The Kansas Board of Pharmacy requires completion of an appropriate degree from an accredited school of pharmacy plus 1,500 hours of practical experience in pharmacy. At the conclusion of the program, students are certified to the Kansas State Board of Pharmacy as having completed the entire externship requirement (1,500 hours) and are therefore eligible to take the Kansas licensure examination. Students must register as interns with the board at matriculation in the School of Pharmacy. Students desiring to compile an official record of pharmacy experience obtained on their own initiative may do so by submitting this information to the Kansas State Board of Pharmacy. Practical experience above and beyond the 1,500 required hours may be gained by working as a licensed pharmacy student intern in Kansas, then transferring the hours to another state.

Medicinal Chemistry Courses

MDCM 599. Clinical Application of Basic Science. 1 Hour.
This course is an inter-departmental, team-based, technology-centric elective course. Concomitantly, instructors from the basic and clinical science departments within the school of pharmacy will promote deeper student understanding of the path a drug takes from discovery, development and ultimately clinical use. Instructors will collaborate in course content development to integrate basic and clinical science concepts. The course will utilize a blended learning method, incorporating out of class podcasts, online group collaborative projects, cloud-based file sharing, and readiness quizzes and exams. (Same as PTX 599 and PHCH 599.) Prerequisite: 4th or 5th professional year standing (4P/5P) in the School of Pharmacy and concomitant enrollment in PHPR 599 is required. LEC.

MDCM 601. Medicinal Biochemistry I. 3 Hours.
A study of the biochemical principles of macromolecular structure and function, molecular communication, and the metabolism of nutrients and xenobiotics as applied to problems of medicinal and pharmacological significance. Prerequisite: Concurrent enrollment in MDCM 602 Lab. LEC.

MDCM 602. Medicinal Biochemistry Laboratory. 1 Hour.
Laboratory exercises illustrating the application of chemical principles to biochemical processes of medicinal, pharmacological, and clinical significance. Prerequisite: Concurrent enrollment in MDCM 601. LAB.

MDCM 603. Medicinal Biochemistry II. 3 Hours.
A study of the biochemical principles of macromolecular structure and function, biosynthesis, molecular communication, and the metabolism of nutrients and xenobiotics as applied to problems of medicinal and pharmacological significance. Prerequisite: MDCM 601. LEC.

MDCM 606. Phytomedicinal Agents. 1 Hour.
This course will acquaint the pharmacy students with the current status of botanical use in the United States. A basic foundation will be provided so that the pharmacist can properly assess the appropriateness and usefulness of various phytomedicines and combinations in managing certain ailments with regard to efficacy, safety, potential toxicity, and potential herb-drug interactions. Prerequisite: MDCM 626 or instructor permission. LEC.

MDCM 607. Clinical Pharmacognosy. 1 Hour.
The course will provide a technical background for understanding the scientific basis underlying the use of herbal medicines. This will be followed by practical information about the pharmacological and chemical properties as well as clinical uses of herbal medicines. Active student participation in discussing the properties of these non-prescription medicinals is expected. Prerequisite: MDCM 601. LEC.

MDCM 625. Medicinal Chemistry I: Neuroeffector Agents. 3 Hours.
A study, from the molecular viewpoint, of the organic substances used as medicinal agents, including consideration of their origins, chemical properties, structure-activity relationships, metabolism and mechanisms of action; this course emphasizes drugs affecting the central nervous system. Prerequisite: CHEM 626 and MDCM 601. LEC.

MDCM 626. Medicinal Chemistry II: Homeostatic Agents. 3 Hours.
A continuation of MDCM 625 with emphasis on autonomic and cardiovascular agents and peripherally-acting hormones. Prerequisite: MDCM 625. LEC.

MDCM 627. Medicinal Chemistry III: Chemotherapeutic Agents. 3 Hours.
A continuation of MDCM 625 and MDCM 626 with special emphasis on antineoplastic, antiviral, antibacterial, antifungal and non-steroidal anti-inflammatory drugs. Prerequisite: MDCM 625. LEC.

MDCM 690. Undergraduate Research. 1-5 Hours.
Research in medicinal chemistry. Students will be assigned to a laboratory research problem. Prerequisite: Consent of instructor. IND.

MDCM 692. Problems in Medicinal Chemistry. 1-5 Hours.
This course encompasses original work on a laboratory problem of limited scope, honors reading assignments from medicinal chemistry literature, or in-depth discussions of assigned topics. Prerequisite: Consent of instructor. IND.

MDCM 701. Biomedical Chemistry. 3 Hours.
A study of the principles of macromolecular structure and function, biosignaling, bioenergetics and metabolism, with an emphasis on the relationship between biochemistry and medicine. Prerequisite: Graduate standing or permission of instructor. LEC.

MDCM 703. Advanced Biomedical Chemistry. 3 Hours.
A study of the principles of basic enzymology, including chemical reactions, biosynthesis, and metabolism. In addition, the course will cover lipids, hormones, vitamins, and minerals. Prerequisite: Graduate standing or permission of instructor. LEC.

MDCM 710. Physiological Aspects of Medicinal Chemistry. 1 Hour.
The goal of this one-credit-hour course is to provide an overview of physiological mechanisms and disease processes as a background for intermediate level courses in medicinal chemistry, drug discovery and drug development. Prerequisite: One college-level course in biology. LEC.

MDCM 725. Medicinal Chemistry I. 2 Hours.
A study, from the molecular viewpoint, of the organic substances used as medicinal agents, including consideration of their origins, chemical properties, structure-activity relationships, metabolism and mechanisms of action; this course emphasizes drugs affecting the central nervous system. Prerequisite: CHEM 626 and MDCM 621. LEC.

MDCM 726. Medicinal Chemistry II. 2 Hours.
A continuation of MDCM 725 with emphasis on autonomic and cardiovascular agents and peripherally-acting hormones. Prerequisite: MDCM 725. LEC.
MDCM 727. Medicinal Chemistry III. 2 Hours.
A continuation of MDCM 725 and MDCM 726 with special emphasis on anticancer, antiviral, antibacterial, antifungal and non-steroidal anti-inflammatory drugs. Prerequisite: MDCM 725. LEC.

MDCM 766. Organic Chemistry of Biological Pathways. 2 Hours.
An introductory graduate level course in bioorganic and medicinal chemistry, in which the principles of organic reaction mechanisms in biological systems are discussed. This course discusses the organic chemistry of metabolic transformations of biomolecules and their associated cofactors, both organic coenzymes and metal ions. LEC.

MDCM 775. Chemistry of the Nervous System. 3 Hours.
A detailed study of the molecular aspects of nerve transmission will be covered with special emphasis on the uptake, storage, release, biosynthesis, and metabolism of specific neurotransmitters. Drugs affecting these processes and current research on receptor isolation and receptor mechanisms will be discussed from a chemical viewpoint. (Same as BIOL 775, CHEM 775, NURO 775, PTX 775, and PHCH 775.) Prerequisite: Consent of instructor. LEC.

MDCM 785. Natural Products of Medicinal Significance. 2 Hours.
A discussion of bioassay-directed screening, the isolation, structure determination, biosynthesis, partial synthesis and total chemical synthesis of organic natural products of medicinal significance. Examples of the classes of compounds to be considered include steroid hormones, cardiac glycosides, alkaloids, antibiotics, terpenes, and the like. Prerequisite: Graduate standing or consent of instructor. LEC.

MDCM 790. Principles of Drug Design. 3 Hours.
A discussion of the principles of contemporary drug design with specific examples chosen from the original literature. Prodrugs; biosteroides; Kcat inhibitors; active site directed reversible and irreversible inhibitors; quantitative SAR; modulation of drug absorption, distribution, metabolism and excretion; molecular dissection; rigid analogs; pharmacophores; etc., will be treated. Prerequisite: Graduate standing or completion of MDCM 624 and MDCM 627. LEC.

MDCM 791. Principles of Drug Disposition. 1 Hour.
An introduction to the chemical and biochemical principles which govern the interaction of drugs and chemicals with cells and organisms. Topics include absorption, distribution, metabolism, and excretion; passive vs. active processes; pharmacokinetics; bioactivation vs. detoxication; and applications in drug design and improvement. Prerequisite: One year of organic chemistry and one course in biochemical. LEC.

A discussion of the principles of contemporary drug design with specific examples chosen from the original literature. Drug-like properties; conformational constraint; structure-based drug design; library generation; HTS hit optimization, will be treated. Prerequisite: Graduate standing or consent of instructor. LEC.

MDCM 799. Seminar in Medicinal Chemistry. 1 Hour.
Reports by research students and discussions of developments in the field not covered in formal courses. LEC.

MDCM 801. Issues in Scientific Integrity. 1 Hour.
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis in the conduct of a scientific career, with emphasis on practical topics of special importance in molecular-level research in the chemical, biological, and pharmaceutical sciences. Topics will include the nature of ethics, the scientists in the laboratory, the scientist as author, grantee, reviewer, employer/employee, teacher, student, and citizen. Discussions will focus on case histories. Graded on a satisfactory/unsatisfactory basis. (Same as MDCM 801, NURO 801, PTX 801, PHCH 801 and PHCH 802.) LEC.

MDCM 816. Careers in Chemical Biology. 1 Hour.
Advanced course examining current research topics in chemical biology. An emphasis will be placed on career options open to PhD scientists in Chemical Biology, and preparation for the different career paths. Extensive student/faculty interaction is emphasized utilizing lectures, class discussion of assigned readings of research reports, and oral presentations. This course will be graded satisfactory/unsatisfactory. (Same as BIOL 816, CHEM 816, and MDCM 816.) Prerequisite: Permission of instructor. SEM.

MDCM 860. Principles and Practice of Chemical Biology. 3 Hours.
A survey of topics investigated by chemical biology methods including: transcription and translation, cell signaling, genetic and genomics, biochemical pathways, macromolecular structure, and the biosynthesis of peptides, carbohydrates, natural products, and nucleic acids. Concepts of thermodynamics and kinetics, bioconjugations and bioorthogonal chemistry will also be presented. (Same as BIOL 860, CHEM 860 and PHCH 860.) Prerequisite: Permission of instructor. LEC.

MDCM 861. Drug Metabolism Laboratory. 1-3 Hours.
A laboratory course exemplifying various techniques used in studying the metabolism of foreign organic compounds in mammalian systems. In addition, enzymatic reactions in other plant and microbial systems are studied. Prerequisite: Consent of instructor. LAB.

MDCM 895. Research in Medicinal Chemistry. 1-12 Hours.
Hours and credit to be arranged. RSH.

MDCM 899. Master's Thesis. 1-12 Hours.
Hours and credit to be arranged. Independent investigation of a research problem of limited scope. Prerequisite: Consent of instructor. THE.

MDCM 950. Advanced Topics: ______. 1-3 Hours.
An in-depth discussion of topics of current interest to medicinal chemists. Prerequisite: Consent of instructor. LEC.

MDCM 952. Introduction to Molecular Modeling. 3 Hours.
Theory and practice of contemporary molecular modeling: real-time computer graphics, model-building routines, use of structural databases, molecular mechanics and molecular dynamics calculations. The laboratory section places emphasis on drug design; work on own problems is welcome. (Same as BIOL 952.) Prerequisite: Graduate standing or consent of instructor. LAB.

MDCM 980. Original Research Proposal. 2 Hours.
Preparation of an original research proposal concerning contemporary problems in medicinal chemistry. Prerequisite: Consent of instructor. LAB.

MDCM 990. Postdoctoral Research in Medicinal Chemistry. 1-12 Hours.
Advanced level research in collaboration with a faculty member, which may involve projects in one or more of the following areas: organic synthesis, isolation and structure elucidation, metabolism, biochemical mechanisms of drug action. Prerequisite: Doctoral degree or equivalent in an appropriate related area, and consent of instructor. RSH.

MDCM 999. Doctoral Dissertation. 1-12 Hours.
Hours and credit to be arranged. Original chemical research in the synthesis and development of medicinal agents, elucidation of the chemical mechanisms of drug action, drug metabolism, and drug toxicities. THE.

Neuroscience Courses

NURO 710. Advanced Neurobiology. 3 Hours.
The course will build an in depth knowledge about basic mechanisms of synaptic communication among nerve cells and their targets, and the structure and function of nervous systems. Topics will include nervous
system development and synapse formation, structure and function of neurons, physiological and molecular basis of synaptic communication between neurons, mechanisms of synaptic plasticity involved in learning and memory, sensory systems (vision, auditory, vestibular, motor reflexes and pain), processing of neural information at cellular and system levels, synapse regeneration and diseases of the nervous system. Prerequisite: BIOL 435 (Introduction to Neurobiology), or consent of instructor. LEC.

NURO 775. Chemistry of the Nervous System. 3 Hours.
A detailed study of the molecular aspects of nerve transmission will be covered with special emphasis on the uptake, storage, release, biosynthesis, and metabolism of specific neurotransmitters. Drugs affecting these processes and current research on receptor isolation and receptor mechanisms will be discussed from a chemical viewpoint. (Same as BIOL 775, CHEM 775, MDCM 775, PTX 775, and PHCH 775.) Prerequisite: BIOL 600 or equivalent. LEC.

NURO 799. Neuroscience Seminar Series. 2 Hours.
Presentations of research papers by faculty, post-doctoral research associates, and graduate students. All graduate students in the Neuroscience program participate in this seminar series throughout their period of training. Each student has to present a seminar once every semester. Presentations by students are evaluated by other graduate students and faculty at the end of each seminar. Prerequisite: Graduate standing in the Neuroscience program. LEC.

NURO 800. Neuroscience Teaching Principles. 2 Hours.
This course is to be used by graduate students fulfilling the teaching requirements for the Ph.D. in Neuroscience. The student will function as a discussion leader and lecturer in a limited number of class sessions. Each student will meet with faculty whom he or she is assisting in preparation of presentation materials and tests. Each student will be evaluated by the faculty mentor and by the students in the class taught. Prerequisite: Graduate standing in Neuroscience. LEC.

NURO 801. Issues in Scientific Integrity. 1 Hour.
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis on practical topics of special importance in molecular-level research in the chemical, biological, and pharmaceutical sciences. Topics will include the nature of ethics, the scientist in the laboratory, the scientist as author, grantee, reviewer, employer/employee, teacher, student, and citizen. Discussions will focus on case histories. Graded on a satisfactory/unsatisfactory basis. (Same as MDCM 801, PTX 801, PHCH 801 and PHCH 802.) Prerequisite: Graduate standing in the Neuroscience program. LEC.

NURO 825. Research in Neuroscience. 1-10 Hours.
Original investigations at an advanced level in the areas of neuroscience. The research by each student will be performed in the laboratory of one of the faculty mentors of the graduate program in Neuroscience. Prerequisite: Graduate standing in the Neuroscience program. LEC.

NURO 844. Neurophysiology. 3 Hours.
Sensorymotor, and cognitive function of the brain will be discussed using a combination of lecture and student presentation formats. Current issues and evidence underlying accepted concepts and mechanisms will be emphasized. (Same as PHS 844.) Prerequisite: PHS 846 or equivalent and consent of instructor. LEC.

NURO 846. Advanced Neuroscience. 5 Hours.
Team-taught, in-depth neuroscience course focusing on normal and diseased brain function at the molecular, cellular and systems levels. Lectures and discussions will emphasize current issues in neuroscience research. (Same as ANAT 846, PHCL 846, and PHS 846.) Prerequisite: Permission of the course instructor. LEC.

NURO 847. Developmental Neurobiology. 2 Hours.
Development of the nervous system from early induction to the development of learning and memory. Topics include: Induction; Cellular Differentiation; Axon Growth and Guidance; Target Selection; Cell Survival and Growth; Synapse Formation; Synapse Elimination; and Development of Behavior. (Same as ANAT 847 and PHS 847.) Prerequisite: Advanced Neuroscience (ANAT 846; NURO 846; PHS 846) or consent of instructor. LEC.

NURO 848. Molecular Mechanisms of Neurological Disorders. 3 Hours.
An in-depth coverage of pathogenic mechanisms in neurological diseases; cellular and molecular responses to brain injury and disease, neuroinflammatory diseases (e.g., multiple sclerosis), neurodegenerative diseases (e.g., Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic lateral sclerosis, and prion diseases), neurogenetic diseases (e.g., lysosomal and peroxisomal disorders, Down’s syndrome and fragile X), trauma, stroke, and viral diseases (e.g., HIV encephalitis). (Same as ANAT 848, PHCL 848, and PHS 848.) Prerequisite: Advanced Neuroscience (ANAT 846, PHCL 846 or PHS 846) or an equivalent course and consent of instructor. LEC.

NURO 899. Neuroscience Master’s Thesis. 1-11 Hours.
Hours and credit for this course to be arranged with the mentor. Independent investigation of a research problem in neuroscience, but of limited scope. Prerequisite: Graduate standing in the Neuroscience program and consent of mentor/instructor. THE.

Hours and credit for this course to be arranged with the mentor. Conduct of original investigation in neurosciences. Prerequisite: Graduate standing in the Neuroscience program post-oral comprehensive examination and consent of mentor/instructor. THE.

Pharmacology and Toxicology Courses

P&TX 599. Clinical Application of Basic Science. 1 Hour.
This course is an inter-departmental, team-based, technology-centric elective course. Concomitantly, instructors from the basic and clinical science departments within the school of pharmacy will promote deeper student understanding of the path a drug takes from discovery, development and ultimately clinical use. Instructors will collaborate in course content development to integrate basic and clinical science concepts. The course will utilize a blended learning method, incorporating out of class podcasts, online group collaborative projects, and readiness quizzes and exams. (Same as MDCM 599 and PHCH 599.) Prerequisite: 4th or 5th professional year standing (4P/5P) in the school of pharmacy and concomitant enrollment in PHPR 599 is required. LEC.

P&TX 630. Pharmacology I. 4 Hours.
The pharmacology series covers the mechanisms by which drugs interact with living organisms. An integrative emphasis will be placed on understanding the molecular basis of drug action with respect to modifying the pathophysiology of specific disease states. Topics in PTX 630 include, general principles of cell biology, molecular biology, pharmacogenomics, immunology and principles of drug metabolism and disposition. Prerequisite: BIOL 646 or equivalent. LEC.

P&TX 631. Pharmacology II. 4 Hours.
The pharmacology series covers the mechanisms by which drugs interact with living organisms. An integrative emphasis will be placed on understanding the molecular basis of drug action with respect to modifying the pathophysiology of specific disease states. Topics in PTX 631 include, hematology, cancer biology and therapeutics, immunopharmacology, infectious diseases and respiratory disease. Prerequisite: PTX 630 and BIOL 400 or equivalent. LEC.
P&TX 632. Pharmacology III. 4 Hours.
The pharmacology series covers the mechanisms by which drugs interact with living organisms. An integrative emphasis will be placed on understanding the molecular basis of drug action with respect to modifying the pathophysiology of specific disease states. Topics in PTX 632 include, cardiovascular diseases, diuretics, autonomic pharmacology and drugs regulating central nervous system function. Prerequisite: PTX 630 and PTX 631. LEC.

P&TX 633. Pharmacology IV. 3 Hours.
The pharmacology series covers the mechanisms by which drugs interact with living organisms. An integrative emphasis will be placed on understanding the molecular basis of drug action with respect to modifying the pathophysiology of specific disease states. Topics in PTX 633 include endocrine disorders, diabetes and obesity, and gastrointestinal pharmacology. Prerequisite: PTX 630, PTX 631 and PTX 632. LEC.

P&TX 640. Toxicology. 2 Hours.
General principles of toxicology, treatment, and management of accidental poisoning, and current topics of interest. Prerequisite: PTX 630, PTX 631, and PTX 632. LEC.

P&TX 641. Antibiotics: Benefits and Risks. 1 Hour.
Students will read about and discuss the latest research on new antibiotic targets, therapeutic potential, disease prevention, and the emergence of antibiotic resistance. LEC.

P&TX 642. Obesity, Diabetes, and Metabolic Syndrome: Current Concepts. 1 Hour.
The objective of this course is to provide students with an opportunity to read, examine, and report on a broad array of topics relevant to diabetes and obesity. Students will be given broad latitude to propose topics of interest to them within the area of diabetes and obesity. The format of the course will be group presentations. Groups of 3 students will identify a topic of interest to them in the field of diabetes and obesity, prepare a 30 min presentation and deliver it to the class for discussion. Prerequisite: PTX 630. LEC.

P&TX 643. Current Concepts of Neurodegenerative Disease. 1 Hour.
Neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, are associated with older age and/or enhanced oxidative stress. The possible causes for the development and progression of these diseases with relation to current research in the field will be discussed. Additionally, a summary of available and suggested future treatments will be given. Prerequisite: PTX 630. LEC.

P&TX 644. Adverse Drug Events. 1 Hour.
The objective of this course is to alerts students to common and preventable adverse drug events. This course will provide students with an opportunity to read, examine, and report on a broad array of topics relevant to adverse drug events. Students will be given broad latitude to propose topics of interest to them within the area of adverse drug events. In addition students can report on common and preventable food-drug, herb-drug, and disease-drug interactions. The format of the course will be group presentations. Groups of 3 students will identify a topic of interest to them among a list of provided topics, prepare a 30 minute presentation and deliver it to the class for discussion. Prerequisite: 3rd, 4th, or 5th professional year standing in the School of Pharmacy. LEC.

P&TX 645. Neurobiological Basis of Addiction: Physiological, Biochemical, Pharmacological & Treatment Concepts. 1 Hour.
Several addictions will be discussed including addictions to alcohol, cocaine, methamphetamine, gambling, and others as time permits. The physiology, biochemistry, pharmacology and available treatments for these addictions will be reviewed. The role of pharmacotherapies will be discussed, particularly as they relate to the molecular basis of addiction. Behavioral and psychological approaches also will be examined. Prerequisite: Completion of PTX 632 or special permission from faculty. LEC.

P&TX 694. Undergraduate Laboratory: Research in Pharmacology and Toxicology. 1-5 Hours.
Original research on a laboratory problem of limited scope. This course cannot count toward pharmacology and toxicology requirements in the School of Pharmacy. Prerequisite: Consent of instructor. IND.

P&TX 698. Library Problems in Pharmacology and Toxicology. 1-5 Hours.
Original library review of a limited special topic in pharmacology and toxicology. The student will write a review in his or her report. This course may count toward pharmacology and toxicology requirements in the School of Pharmacy. Prerequisite: PTX 635 and consent of instructor. IND.

P&TX 700. Professional Issues in the Biomedical Sciences. 2 Hours.
A course designed to assist doctoral students in the biomedical sciences in their professional development by providing presentations, discussions, and practical experiences related to career planning. Topics include diverse career opportunities and expectations of each, preparation of vitae/resumes and other elements of a successful job search, writing scientific papers and dealing with editors, developing programmatic research programs, balancing professional obligations, advancing through promotions, and related topics. Prerequisite: Graduate standing in pharmacology and toxicology. LEC.

P&TX 730. Advanced Pharmacology I - CNS and ANS. 2 Hours.
A detailed study of the fundamentals of autonomic nervous system, central nervous system, and their pharmacology. The student will attend PTX 632 lectures and meet separately with the faculty for additional discussions of advanced material on the topics. The students will be examined on the advanced material. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 731. Advanced Pharmacology II - Cardiovascular and Renal System. 2 Hours.
A detailed study of the fundamentals of cardiovascular system, renal system and their pharmacology. The student will attend PTX 632 lectures and meet separately with the faculty for additional discussions of advanced material on the topics. The students will be examined on the advanced material. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 732. Advanced Pharmacology III - Cancer Biology and Inflammatory Diseases. 2 Hours.
A detailed study of the fundamentals of inflammation, cancer biology and their pharmacology. The student will attend PTX 631 lectures and meet separately with the faculty for additional discussions of advanced material on the topics. The students will be examined on the advanced material. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 733. Advanced Pharmacology IV - Endocrinology. 2 Hours.
A detailed study of the fundamentals of endocrinology and associated pharmacology. The student will attend PTX 633 lectures and meet separately with the faculty for additional discussions of advanced material on the topics. The students will be examined on the advanced material. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 740. Advanced Biotechnology. 3 Hours.
An examination of basic principles of molecular biology, immunology, and protein chemistry as they apply to the identification, production, stability, delivery, and monitoring of new therapeutic agents provided by
the expanding biotechnology industry. Students will attend lectures in PTX 633 and meet separately with faculty for additional discussions of more advanced material on these topics. The students will be examined on the advanced material. Prerequisite: Graduate standing in Pharmacology and Toxicology. LAB.

P&TX 741. Biomedical Statistics. 3 Hours.
This course is primarily intended for students concerned with the analysis of experimental and observational data, with an emphasis on biomedical and pharmacological applications. The topics covered by the course include the design of experimental studies, data collection, probability theory, descriptive statistics, probability distribution, hypothesis testing, tests of analysis of variance for factorial designs, linear and multiple regression, analysis of covariance and non-parametric methods. Prerequisite: PTX graduate student status in good academic standing. LEC.

P&TX 742. Experimental Pharmacology. 4 Hours.
Experimental approaches to understanding mechanism of drug action. Use of drugs as tools to understand functioning of biological systems will also be stressed. Historically important experiments will be discussed along with experiments which are currently used to define drug mechanisms. Topics will include: dose-response, drug receptors, drug metabolism, chemotherapy as well as autonomic CNS, cardiovascular and renal pharmacology. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 747. Molecular Toxicology. 4 Hours.
A detailed study of the fundamentals of the experimental methods used in a modern toxicology laboratory. The student will attend PTX 640 lectures and meet separately with the faculty for additional discussions of advanced material on the topics. The students will be examined on the advanced material. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

An overview of animal care and use, this course is designed for graduate students currently engaged in animal based research or that anticipate work with live animals. Topics covered include regulatory framework for animal research; animal facility operations; biology, husbandry, and care of common laboratory animal species; and experimental manipulation of laboratory animals. Emphasis is placed on practical experience with live animals. LEC.

P&TX 775. Chemistry of the Nervous System. 3 Hours.
A detailed study of the molecular aspects of nerve transmission will be covered with special emphasis on the uptake, storage, release, biosynthesis, and metabolism of specific neurotransmitters. Drugs affecting these processes and current research on receptor isolation and receptor mechanisms will be discussed from a chemical viewpoint. (Same as BIOL 775, CHEM 775, MDCM 775, NURO 775, and PHCH 775.) Prerequisite: BIOL 600 or equivalent. LEC.

P&TX 799. Pharmacology and Toxicology Seminar. 1-2 Hours.
A review of current literature and research in pharmacology and toxicology. Required of all graduate students in the department every fall and spring semester. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Graduate standing in PTX. LEC.

P&TX 800. Pharmacology and Toxicology Teaching Principles. 2 Hours.
This course is to be used by graduate students fulfilling the teaching requirements for the Ph.D. in pharmacology and toxicology. The student will function as a discussion leader and lecturer in a limited number of class sessions. Each student will meet with the faculty whom he or she is assisting. Prerequisite: Graduate standing in pharmacology and toxicology program. RSH.

P&TX 801. Issues in Scientific Integrity. 1-3 Hours.
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis on practical topics of special importance in molecular-level research in the chemical, biological, and pharmaceutical sciences. Topics will include the nature of ethics, the scientist in the laboratory, the scientist as author, grantee, reviewer, employer/employee, teacher, student, and citizen. Discussions will focus on case histories. Graded on a satisfactory/unsatisfactory basis. (Same as MDCM 801, NURO 801, PHCH 801 and PHCH 802.) LEC.

P&TX 803. Pharmacology Literature Review I. 1 Hour.
This course is designed for graduate students and will fulfill the first written exam requirement for the Ph.D. in pharmacology and Toxicology. The student will research and write a six page literature review by choosing a topic provided by the faculty. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 805. Pharmacology Literature Review II. 1 Hour.
This course is designed for graduate students and will fulfill the second written exam requirement for the Ph.D. in pharmacology and Toxicology. The student will research and write a twelve page literature review by choosing a topic provided by the faculty. Prerequisite: Graduate standing in Pharmacology and Toxicology Program. LEC.

P&TX 825. Research in Pharmacology and Toxicology. 1-10 Hours.
Original investigations at an advanced level in the areas of pharmacology or toxicology or related fields. This research will be performed by graduate students in collaboration with a faculty member. Prerequisite: Graduate standing and consent of instructor. RSH.

Hours and credit to be arranged. Independent investigation of a research problem of limited scope. Prerequisite: Graduate standing in PTX and consent of instructor. THE.

P&TX 990. Postdoctoral Research. 1-11 Hours.
Advanced level research in collaboration with a faculty member in the department. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Doctoral degree or equivalent in an appropriate related area, and consent of instructor. RSH.

P&TX 999. Doctoral Dissertation. 1-11 Hours.
Hours and credit to be arranged. Original investigation in pharmacology and toxicology. Prerequisite: Consent of instructor. THE.

Pharmacy Courses

PHAR 500. Introduction to Pharmacy. 1 Hour.
This course is designed to introduce pharmacy students to the profession of pharmacy, potential career pathways, and available academic and post-doctoral educational opportunities. Additionally, topics such as professionalism, leadership, professional advocacy, empathy, cultural competency, self-directed learning, interprofessional education, and professional communication will be discussed. Students will receive instruction and fulfill the prerequisites for their Introductory Pharmacy Practice Experiences (IPPE) occurring in the summer semesters of the PharmD program. LEC.

PHAR 503. Pharmacy Practice III Health-System Pharmacy Practice Fundamentals. 3 Hours.
Introduction to the prescription dispensing process within health-system pharmacies (hospital, nursing home, home health, HMO) with an emphasis on distribution systems, parenteral, and sterile products.
PHAR 509. History of Pharmacy Elective. 1 Hour.
This course is comprised of a survey of historical highlights of the development of Pharmacy as a discipline. The course will cover early antecedents of pharmacy, development of the discipline in Europe and the United States, the development of professional organizations, standards, education, and literature, economic development, and the pharmacists’ contributions to community service, science, and the industry. There will be a mix of some lectures, discussion, assigned readings, and short papers. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHAR 510. Pharmacy Skills Laboratory I. 1 Hour.
Exercises that reinforce the concepts taught in pharmacy practice, pharmaceutical chemistry, medicinal chemistry, and pharmacology courses. Includes exercises in compounding, dispensing, and patient counseling. LAB.

PHAR 515. Pharmacy Skills Laboratory II. 1 Hour.
Exercises that reinforce the concepts taught in pharmacy practice, pharmaceutical chemistry, medicinal chemistry, and pharmacology courses. Includes exercises in compounding, dispensing, and patient counseling. LAB.

PHAR 520. Pharmacy Skills Laboratory III. 1 Hour.
Exercises that reinforce the concepts taught in pharmacy practice, pharmaceutical chemistry, medicinal chemistry, and pharmacology courses. Includes exercises in compounding, dispensing, and patient counseling. LAB.

PHAR 525. Pharmacy Skills Laboratory IV. 1 Hour.
Exercises that reinforce the concepts taught in pharmacy practice, pharmaceutical chemistry, medicinal chemistry, and pharmacology courses. Includes exercises in compounding, dispensing, and patient counseling. LAB.

PHAR 530. Pharmacy Skills Laboratory V. 1 Hour.
Exercises that reinforce the concepts taught in pharmacy practice, pharmaceutical chemistry, medicinal chemistry, and pharmacology courses. Includes exercises in compounding, dispensing, and patient counseling. LAB.

PHAR 535. Pharmacy Skills Laboratory VI. 2 Hours.
Exercises that reinforce the concepts taught in pharmacy practice, pharmaceutical chemistry, medicinal chemistry, and pharmacology courses. Includes exercises in compounding, dispensing, and patient counseling. LAB.

PHAR 550. Introductory Pharmacy Practice Experience - Community. 4 Hours. AE52.
A required four credit hour experiential course involving 160 hours of on-site experiential education. The course is designed to provide the student pharmacist with exposure to the practice of pharmacy in either an independent community or chain pharmacy in either a rural or urban setting within the state of Kansas. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Completion of PHAR 500 or instructor consent. FLD.

PHAR 560. Introductory Pharmacy Practice Experience - Institutional. 4 Hours.
A required four credit hour experiential course years involving 160 hours of on-site experiential education. The course is designed to provide the student pharmacist with exposure to the practice of pharmacy in an institutional health-system (hospital) environment in either a rural or urban setting within the state of Kansas. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Completion of PHAR 502 or instructor consent. FLD.

PHAR 599. Clinical Applications of Basic Science. 2 Hours.
This course is an inter-departmental, team-based, technology-centric elective course. Concomitantly, instructors from the basic and clinical science departments within the school of pharmacy will promote deeper student understanding of the path a drug takes from discovery, development and ultimately clinical use. Instructors will collaborate in course content development to integrate basic and clinical science concepts. The course will utilize a blended learning method, incorporating out of class podcasts, online group collaborative projects, and readiness quizzes and exams. Prerequisite: 4th or 5th professional year standing (2nd year Professional and 3rd year Professional standing) in the School of Pharmacy. LEC.

Pharmaceutical Chemistry Courses

This elective class will explore emerging areas of research currently impacting the pharmaceutical industry. Potential topics include: biologicals as therapeutics, drug targeting, prodrugs, nanotechnology, biological barriers, gene therapy, transporters, vaccines, intracellular drug trafficking, controlled release drug delivery, cancer therapy, analytical biotechnology and many others. The class will be team taught by PHCH faculty and guest speakers. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHCH 512. Road Map to the Development and Regulatory Approval of a New Drug. 1 Hour.
This special topics course will cover key steps in developing and bringing a new drug through pharmaceutical development and regulatory approval and into commercial use. Development of both traditional small-molecule chemical drugs and biotechnology-based protein drugs will be discussed. Example topics include: (1) how does a drug candidate move from its discovery at the lab bench into clinical trials? (2) what are the key hurdles in developing a new medicine that can be produced at large-scale in a manufacturing facility? (3) why are patents and venture capital so important in drug development? Guest lecturers will provide real world perspectives including case studies. This is two-hour class that meets 8 times during the semester. Prerequisite: 1st, 2nd or 3rd professional year standing in the School of Pharmacy. LEC.

PHCH 514. Scientific Writing for the Health Professional. 1 Hour.
Communicating research plans and experimental findings is a critical skill for health care professionals working in a research environment, and successful communication depends on clarity of thought and careful use of language. This course is intended for 5th professional (5P) year students who are seeking residency and will need to write research proposals and abstracts, as well as prepare effective posters and presentations. It is an intensive course with multiple writing assignments. Students are expected to participate fully, and individual feedback and guidance on writing will be provided by the instructor. Graded on a satisfactory/fail. Prerequisite: 5th professional (5P) year students who plan to complete post-doctoral residency training. LEC.

PHCH 517. Pharmacy Calculations. 2 Hours.
An introduction to the mathematics involved in filling prescriptions and in manufacturing pharmaceuticals. Includes an introduction to standard prescription notation and familiarization with pharmaceutical weights and measures. LEC.

PHCH 518. Physical-Chemical Principles of Solution Dosage Forms. 3 Hours.
Physical properties of pharmaceutical solutions and their physiological compatibility will be discussed (intermolecular interactions, energetics, colligative properties, isotonicity, pH, buffers and drug solubility). Kinetics
and mechanisms of drug degradation in solution will also be introduced. Prerequisite: PHCH 517. LEC.

PHCH 599. Clinical Application of Basic Science. 1 Hour.
This course is an inter-departmental, team-based, technology-centric elective course. Concomitantly, instructors from the basic and clinical science departments within the school of pharmacy will promote deeper student understanding of the path a drug takes from discovery, development and ultimately clinical use. Instructors will collaborate in course content development to integrate basic and clinical science concepts. The course will utilize a blended learning method, incorporating out of class podcasts, online group collaborative projects, and readiness quizzes and exams. (Same as MDCM 599 and PTX 599.) Prerequisite: 4th or 5th professional year standing (4P/5P) in the school of pharmacy and concomitant enrollment in PHPR 599 is required. LEC.

PHCH 605. Vaccines. 1 Hour.
Vaccines are currently the most powerful therapeutic approach available for infectious disease and promise to become of increasing importance for a wide variety of other pathologies including cancer. This course discusses the immunological basis of vaccinology, types of vaccines currently available and in development and the process by which vaccines are made from the basic research stage through their pharmaceutical development and marketing. Ethical aspects of vaccine use will also be considered. LEC.

PHCH 625. Pharmacokinetics. 3 Hours.
A discussion of the basic concepts, and some clinical applications, of pharmacokinetics, clearance concepts, extravascular dosing, and the use of pharmacokinetics in dosage regimen design and adjustment. Prerequisite: PHCH 517 and PHCH 518. LEC.

PHCH 626. Biopharmaceutics and Drug Delivery. 3 Hours.
A study of biological barriers to drug delivery, conventional dosage forms, and new and future drug delivery strategies. Prerequisite: PHCH 517, PHCH 518, and PHCH 625. LEC.

PHCH 667. Introduction to Clinical Chemistry. 2 Hours.
A lecture-discussion course concerned with identification of the contents of physiological fluids, changes in physiological fluid content induced by disease and drugs, and therapeutic drug monitoring: case studies are presented. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHCH 690. Undergraduate Research in Pharmaceutical Chemistry. 1-5 Hours.
Student will be assigned a suitable research project in the area of pharmaceutical analysis or pharmaceutics. Prerequisite: Consent of instructor. IND.

PHCH 693. Clinical Pharmacokinetics. 2 Hours.
This course presents discussions on physiological and disease state variables in pharmacokinetics for selected drugs and drug classes, and instructs students in the use of physiological and disease state pharmacokinetic information to develop individualized therapeutic regimens. Prerequisite: PHCH 625 and PHCH 626. LEC.

PHCH 694. Problems in Pharmaceutical Chemistry. 1-5 Hours.
A student will be assigned a suitable research project in an area of pharmaceutical analysis or pharmaceutics. This course is offered regularly by the Department of Pharmaceutical Chemistry to meet the special needs of selected students, usually for one of the following two situations: (1) This course may be taken when a student has a special interest in a problem or area of limited scope and desires to pursue that study in depth under supervision of a member of the faculty. (2) This course is sometimes used as a remedial class to provide a mechanism of intensive review and study in an area of weakness. Prerequisite: Consent of instructor. IND.

PHCH 700. Experimental Methods in Pharmaceutical Chemistry. 1-5 Hours.
Discussions, lectures, and laboratory work designed to acquaint and provide hands on experiences to advanced undergraduate and graduate students with experimental design, methods, and approaches relevant to modern research in pharmaceutical chemistry. Prerequisite: Consent of instructor. LEC.

PHCH 705. Writing and Communicating Science for Graduate Students. 3 Hours.
Communicating research proposals and experimental findings is a critical skill for scientists. Successful communication depends on clarity of thought and careful use of language. This course will use class discussions with examples and homework assignments to help prepare the graduate student to successfully communicate in both academia and industry settings. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Graduate standing in PHCH or consent of the instructor. LEC.

PHCH 712. Road Map to the Development and Regulatory Approval of a New Drug. 1 Hour.
This special topics course will cover key steps in developing and bringing a new drug through pharmaceutical development and regulatory approval and into commercial use. Development of both traditional small-molecule chemical drugs and biotechnology-based protein drugs will be discussed. Example topics include: (1) how does a drug candidate move from its discovery at the lab bench into clinical trials? (2) what are the key hurdles in developing a new medicine that can be produced at large-scale in a manufacturing facility? (3) why are patents and venture capital so important in drug development? Guest lecturers will provide real world perspectives including case studies. This is two-hour class that meets 8 times during the semester. Prerequisite: Graduate standing in Pharmaceutical Chemistry or a trainee of the NIH Biotech Training Grant. LEC.

PHCH 715. Drug Delivery. 3 Hours.
The course will survey the latest technology for delivering pharmaceuticals and biologicals to reduce side effects and enhance drug efficacy. The course will survey the latest research in this area and examine more classical delivery methods. A qualitative and quantitative understanding of drug delivery practice and theory is the goal. Prerequisite: Master's or PhD candidate in Engineering, Chemistry, Medicinal Chemistry, or Pharmaceutical Chemistry (by appointment for seniors or graduate students in departments not listed). LEC.

PHCH 716. Drug Delivery. 3 Hours.
The course will survey the latest technology for delivering pharmaceuticals and biologicals to reduce side effects and enhance drug efficacy. The course will survey the latest research in this area and examine more classical delivery methods. A qualitative and quantitative understanding of drug delivery practice and theory is the goal. Prerequisite: This course is only open to distance education students. LEC.

PHCH 718. Physical-Chemical Principles of Solution Dosage Forms. 3 Hours.
Physical properties of pharmaceutical solutions and their physiological compatibility will be discussed (intermolecular interactions, energetics, colligative properties, isoncitivity, pH, buffers and drug solubility). Kinetics and mechanisms of drug degradation in solution will also be introduced. Prerequisite: Graduate standing. LEC.
PHCH 719. Physical-Chemical Principles of Solution Dosage Forms. 3 Hours.
Physical properties of pharmaceutical solutions and their physiological compatibility will be discussed (intermolecular interactions, energetics, colligative properties, isotonicity, pH, buffers and drug solubility). Kinetics and mechanisms of drug degradation in solution will also be introduced. This course is only open to distance education students. Prerequisite: Graduate standing. LEC.

PHCH 725. Molecular Cell Biology. 3 Hours.
Fundamental and advanced concepts in cell biology and the molecular interactions responsible for cell function, homeostasis and disease will be presented. Current analytical methods for examining cells and their molecular components will be discussed. Emphasis will be placed on the chemical and physical properties of individual proteins, nucleic acids and lipids and their assembly into cellular and subcellular structures. (Same as CPE 725) LEC.

PHCH 730. Biopharmaceutics & Pharmacokinetics. 3 Hours.
A quantitative treatment of the processes involved with drug absorption, distribution, metabolism, and excretion in living systems. LEC.

PHCH 731. Biopharmaceutics and Pharmacokinetics. 3 Hours.
A quantitative treatment of the processes involved with drug absorption, distribution, metabolism, and excretion in living systems. This course open only to distance education students. LEC.

PHCH 744. Organic Chemistry for Pharmaceutical Scientists. 3 Hours.
A consideration of the structural features and driving forces that control the course of chemical reactions. Topics will include functional group chemistry: electronic structure, acid/base properties: molecular structure and properties (dipole, strain, and steric effects, inductive and resonance effects); dynamics of reactions (the major organic reaction mechanism, kinetics, energy profiles, isotope effects, linear free energy relationships), solvent effects, stereochemistry and conformation, an introduction to orbital symmetry control; basic thermodynamic and kinetic concepts; and an overview of important classes of mechanisms. This course is open only to distance education students. Prerequisite: CHEM 624 and CHEM 626. LEC.

PHCH 775. Chemistry of the Nervous System. 3 Hours.
A detailed study of the molecular aspects of nerve transmission will be covered with special emphasis on the uptake, storage, release, biosynthesis, and metabolism of specific neurotransmitters. Drugs affecting these processes and current research on receptor isolation and receptor mechanisms will be discussed from a chemical viewpoint. (Same as PTX 775, BIOL 775, CHEM 775, MDCM 775 and NURO 775.) Prerequisite: BIOL 600 or equivalent. LEC.

PHCH 801. Issues in Scientific Integrity. 1 Hour.
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis on practical topics of special importance in molecular-level research in the chemical, biological, and pharmaceutical sciences. Topics will include the nature of ethics, the scientist in the laboratory, the scientist as author, grantee, reviewer, employer/employee, teacher/student, and citizen. Discussions will focus on case histories. Graded on a satisfactory/unsatisfactory basis. This course is open only to distance education students. (Same as PHCH 801, MDCM 801, NURO 801, and PTX 801.) LEC.

PHCH 816. Careers in Chemical Biology. 1 Hour.
Advanced course examining current research topics in chemical biology. An emphasis will be placed on career options open to PhD scientists in Chemical Biology, and preparation for the different career paths. Extensive student/faculty interaction is emphasized utilizing lectures, class discussion of assigned readings of research reports, and oral presentations. This course will be graded satisfactory/unsatisfactory. (Same as BIOL 816, CHEM 816 and MDCM 816.) Prerequisite: Permission of instructor. SEM.

PHCH 826. Molecular Cell Biology. 3 Hours.
Fundamental and advanced concepts in cell biology and the molecular interactions responsible for cell function, homeostasis and disease will be presented. Current analytical methods for examining cells and their molecular components will be discussed. Emphasis will be placed on the chemical and physical properties of individual proteins, nucleic acids and lipids and their assembly into cellular and subcellular structures. This course is open only to distance education students. LEC.

PHCH 850. Solid State Stability and Formulation. 3 Hours.
This course is designed to provide an understanding of the formulation and stability of small and large drug candidates in the solid state. The first two-thirds of the course will focus on small molecules, with the last third being devoted to proteins. Prerequisite: Graduate standing in PHCH or consent of the instructor. LEC.

PHCH 851. Solid State Stability and Formulation. 3 Hours.
This course is designed to provide an understanding of the formulation and stability of small and large drug candidates in the solid state. The first two-thirds of the course will focus on small molecules, with the last third being devoted to proteins. This course is open only to distance education students. Prerequisite: Graduate standing in Pharmaceutical Chemistry or consent of the instructor. LEC.

PHCH 860. Principles and Practices of Chemical Biology. 3 Hours.
A survey of topics investigated by chemical biology methods including: transcription and translation, cell signaling, genetic and genomics, biochemical pathways, macromolecular structure, and the biosynthesis of peptides, carbohydrates, natural products, and nucleic acids. Concepts of thermodynamics and kinetics, bioconjugations and bioorthogonal chemistry will also be presented. (Same as BIOL 860, CHEM 860 and MDCM 860.) Prerequisite: Permission of instructor. LEC.

PHCH 862. Pharmaceutical Equilibrium. 3 Hours.
A course on equilibria in aqueous and non-aqueous systems with emphasis on solutions of interest to pharmaceutical technology. Included are association-dissociation equilibria, complexation, protein binding calculation of species concentrations, estimation of solubility and ionization constants. Methods for the determination of chemical potential in solution are presented. LEC.

PHCH 863. Pharmaceutical Equilibria. 3 Hours.
A course on equilibria in aqueous and non-aqueous systems with emphasis on solutions of interest to pharmaceutical technology. Included are association-dissociation equilibria, complexation, protein binding calculation of species concentrations, estimation of solubility and ionization constants. Methods for the determination of chemical potential in solution are presented. This course is open only to distance education students. LEC.
PHCH 864. Pharmaceutical Analysis. 4 Hours.
This course is intended to be a comprehensive treatment of contemporary techniques used to validate analytical methods for the determination of drugs in the bulk form, pharmaceutical formulations, biological samples and other relevant media. The emphasis will be on chromatographic techniques reflecting the preeminent position that those techniques occupy in the field of pharmaceutical and biomedical analysis. Prerequisite: Previous or concurrent enrollment in PHCH 684. LEC.

PHCH 865. Pharmaceutical Analysis. 4 Hours.
Advanced course on pharmaceutical analysis. This course is only open to distance education students. LEC.

PHCH 870. Advanced Pharmaceutical Biotechnology. 4 Hours.
A course designed to emphasize the important facets of recombinant proteins and vaccines as pharmaceutical agents. Basics of protein structure and analysis will be introduced, and methods for production, isolation, and purification of recombinant proteins will be described. Potential chemical and physical degradation processes and strategies for circumventing these difficulties will be discussed. An overview of the development and formulation of vaccines and their immunological basis will be presented. Prerequisite: BIOL 600 or consent of instructor. LEC.

PHCH 871. Advanced Pharmaceutical Biotechnology. 4 Hours.
A course designed to emphasize the important facets of recombinant proteins and vaccines as pharmaceutical agents. Basics of protein structure and analysis will be introduced, and methods for production, isolation, and purification of recombinant proteins will be described. Potential chemical and physical degradation processes and strategies for circumventing these difficulties will be discussed. This course is only open to distance education students. An overview of the development and formulation of vaccines and their immunological basis will be presented. Prerequisite: BIOL 600 or consent of instructor. LEC.

PHCH 889. Research in Pharmaceutical Chemistry. 1-11 Hours.
Advanced level research in collaboration with a faculty member in pharmaceutical chemistry or related areas. This course is limited to students who are doing research, but not necessarily working toward either a master's or a doctoral degree. RSH.

PHCH 888. Master's Thesis. 1-10 Hours.
Master's Thesis. This course is open only to distance education students. THE.

PHCH 889. Master's Thesis. 1-11 Hours.
Graded on a Satisfactory/Fail basis. THE.

PHCH 920. Chemical Kinetics. 2 Hours.
This course provides the principles of kinetic data analysis as applied to problems in pharmaceutical chemistry. Topics include the setup and solution of rate equations related to chemical reactions; simplifications and approximations in complex equation systems; isotope, solvent and salt rate effects; and diffusion and activation controlled reactions. LEC.

PHCH 921. Chemical Kinetics. 2 Hours.
This course provides the principles of kinetic data analysis as applied to problems in pharmaceutical chemistry. Topics include the setup and solution of rate equations related to chemical reactions; simplifications and approximations in complex equation systems; isotope, solvent and salt rate effects; and diffusion and activation controlled reactions. This course is only open to distance education students. LEC.

PHCH 972. Mechanisms of Drug Deterioration and Stabilization. 3 Hours.
A course dealing with mechanisms and chemical kinetics of drug deterioration and stabilization. LEC.

PHCH 973. Mechanisms of Drug Deterioration and Stabilization. 3 Hours.
A course dealing with mechanisms and chemical kinetics of drug deterioration and stabilization. This course is only open to distance education students. LEC.

PHCH 974. Advanced Special Topics in Pharmaceutical Chemistry. 1-3 Hours.
Various topics pertinent to the area of pharmaceutical chemistry will be explored. Graded on a satisfactory/unsatisfactory basis. LEC.

PHCH 978. Pharmaceutical Chemistry Seminar. 1 Hour.
A seminar on the chemistry of pharmaceutical systems. LEC.

This course is open only to distance education students. THE.

THE.

Pharmacy Practice Courses

PHPR 502. Pharmacy Practice II Pharmaceutical Care Fundamentals. 4 Hours.
Drug interactions will be presented with an emphasis on evaluating the risk of the interaction in a particular patient. Patient counseling and communication techniques will be covered. Approximately half the class time will be spent covering non-prescription drugs and herbs. Prerequisite: PHAR 500. LEC.

PHPR 508. Oncology Elective. 1 Hour.
This course is designed to extend the students' understanding of Oncology diseases and treatments beyond what is covered in the Pharmacotherapy series in the School of Pharmacy. Prerequisite: PHPR 646. LEC.

PHPR 509. Medicare Part D. 1 Hour.
This elective course will focus on the understanding and active enrollment of patients into Medicare prescription drug benefit (Part D). Students will mainly focus on the understanding of Medicare eligibility, benefits, formulary requirements, and the administration of benefits. Students will also participate in community outreach which may focus on underserved patients. Prerequisite: 2nd or 3rd professional year standing in the School of Pharmacy. LEC.

PHPR 510. Medical Terminology Elective. 1 Hour.
This course provides the fundamentals for developing a medical vocabulary. The student will develop the ability to understand, define and utilize medical terminology and abbreviations used in patient care. LEC.

PHPR 511. Service-Learning Elective. 1 Hour.
Students will work at a health-related community center and participate in structured learning exercises. The objectives are to: 1) enable students to learn appropriate strategies to communicate and provide services to people with varying languages, cultures, social, and economic backgrounds, disabilities, illnesses, or impairments, 2) increase social interaction and citizenship, 3) heighten social awareness and understanding of ethical issues, and 4) acknowledge social responsibility and realize personal values. FLD.

PHPR 512. Nuclear Pharmacy. 1 Hour.
This course is designed for students interested in learning about nuclear pharmacy practice as a specialty practice in pharmacy. Students will learn about the application of radiopharmaceuticals used in the diagnosis of various diseases or identifying patient therapeutic issues. The course will cover principles of radiation, radiation safety, preparation of and
 handling of radiopharmaceuticals, their appropriate use, and the training requirements for a nuclear pharmacist. At the conclusion of the course the student will have an insight into this specialty practice in nuclear pharmacy as a potential career. Prerequisite: Students must be admitted to the School of Pharmacy. LEC.

PHPR 513. Chemical Dependency Elective. 1 Hour. This elective course will enhance the pharmacy student’s knowledge and understanding of the current theories behind the addiction process, frequently abused drugs and/or chemicals and the treatment and recovery process. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHPR 514. Communication and Counseling. 1 Hour. An elective course designed to help students improve professional communication skills. Prerequisite: PHAR 500. LEC.

PHPR 515. The Aging Patient. 1 Hour. This elective course is designed for the learner to explore many of the clinical considerations employed when caring for the aging patient within our health care system. The course will be devoted to exploring generational perceptions, learning how the aging process can impact patient care, and identifying the role of the pharmacist in enhancing this care. Prerequisite: Open to four-year Pharmacy and fifth-year Pharmacy students only. LEC.

PHPR 516. Pharmacy in Public Health. 1 Hour. Public health is more than providing treatment for an illness; it is a concern for the health of an entire population. The ideal is to ensure the health of all. This course will focus on providing students with a solid foundational understanding of what public health is and how pharmacists play a role as a public health provider. The course will cover the concepts and tools used in public health including issues such as: determining health, cultural competence, health promotion, disease prevention, epidemiology and disease, describing populations and community health. Lastly, the course will provide students with specific pharmacist models of public health. Successful models include tobacco cessation programs, community vaccination programs, obesity prevention, tuberculosis monitoring, emergency preparedness and domestic violence. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHPR 517. Medication Safety and Error Prevention. 1 Hour. This course introduces the student to medication safety and the technology as well as the tools used in error prevention. The student will also learn about adverse drug events including both medication errors and adverse drug reactions in hospital and retail pharmacy settings. Prerequisite: 4th or 5th professional year standing in the School of Pharmacy. LEC.

PHPR 518. Cultural Competency in Pharmacy Practice. 1 Hour. The United States becomes more culturally diverse every year. This course is designed to help student pharmacists excel in today’s multicultural environment by improving their cultural competency skills. Students will explore their own culture and those belonging to other diverse cultures. Students are expected to learn of the beliefs, needs and tendencies of those with cultures much different than themselves. Prerequisite: Must be admitted to the School of Pharmacy. LEC.

PHPR 519. Business Planning for Pharmacy. 1 Hour. This course is designed for students interested in developing a business plan. Most pharmacists will have an opportunity to develop a new service, product line or even start a new business venture in their careers. Students need to know how to create a formal business plan and how to present the plan to decision makers. The course will cover the basic components and rationale of creating a formal a business plan. When finished students will be expected to have created a written business plan and will present their creation to the class. In this manner, students will gain experience in developing an idea into a plan. Prerequisite: Students must be admitted to the school of Pharmacy. LEC.

PHPR 599. Clinical Application of Basic Science. 1 Hour. This course is an inter-departmental, team-based, technology-centric elective course. Concomitantly, instructors from the basic and clinical science departments within the school of pharmacy will promote deeper student understanding of the path a drug takes from discovery, development and ultimately clinical use. Instructors will collaborate in course content development to integrate basic and clinical science concepts. The course will utilize a blended learning method, incorporating out of class podcasts, online group collaborative projects, and readiness quizzes and exams. Prerequisite: 4th or 5th professional year standing (4P/5P) in the school of pharmacy and concomitant enrollment in either PTX 599, MDCM 599, or PHCH 599 is required. LEC.

PHPR 601. Advanced Pharmacy Practice Experience 1. 4 Hours. The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 602. Advanced Pharmacy Practice Experience 2. 4 Hours. The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 603. Advanced Pharmacy Practice Experience 3. 4 Hours. The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 604. Advanced Pharmacy Practice Experience 4. 4 Hours. The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may
include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 605. Advanced Pharmacy Practice Experience 5. 4 Hours.
The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 606. Advanced Pharmacy Practice Experience 6. 4 Hours.
The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 607. Advanced Pharmacy Practice Experience 7. 4 Hours.
The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 608. Advanced Pharmacy Practice Experience 8. 4 Hours.
The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional.

The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 609. Advanced Pharmacy Practice Experience 9. 4 Hours.
The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 610. Advanced Pharmacy Practice Experience 10. 4 Hours.
The final year of the Doctor of Pharmacy program is spent participating in pharmacy practice experience rotations. These consist of nine, one-month rotations, in various health care settings. Such practice settings may include a variety of acute care, ambulatory care, managed care, hospital and community practice sites. Each rotation provides an academically structured environment that enables the student to gain practical experience under the guidance of a practicing health care professional. The purpose of providing pharmacy students with a pharmacist role model is to foster the development of both professional confidence as well as competence. These practice-based experience settings encourage the student to apply their didactic education to clinical problem solving. Both clinical and distributive pharmacy services will be integrated in these experiences for optimal learning. FLD.

PHPR 611. Health Care Systems. 3 Hours.
This introductory course in nuclear pharmacy practice provides a basic understanding of radiation, radiation dosimetry, radiopharmaceuticals, and clinical application of radiopharmaceuticals in diagnosis and treatment. The course includes both didactic material as well as laboratory experience. LEC.

PHPR 612. Pharmacoeconomics and Health Outcomes. 2 Hours.
This course is designed to provide knowledge and skills to effect efficient and effective pharmacy management. This will include foundations in financial management, inventory control, purchasing, cost-effective drug utilization, quality management, pharmacoeconomics, and human resource management. LEC.

PHPR 613. Pharmacoeconomics and Health Outcomes. 2 Hours.
This course is designed to provide knowledge and skills to effect efficient and effective pharmacy management. This will include foundations in financial management, inventory control, purchasing, cost-effective drug utilization, quality management, pharmacoeconomics, and human resource management. LEC.

PHPR 614. Pharmacy Management. 3 Hours.
This introductory course in nuclear pharmacy practice provides a basic understanding of radiation, radiation dosimetry, radiopharmaceuticals, and clinical application of radiopharmaceuticals in diagnosis and treatment. The course includes both didactic material as well as laboratory experience. LEC.

PHPR 615. Nuclear Pharmacy Practice. 2 Hours.
This introductory course in nuclear pharmacy practice provides a basic understanding of radiation, radiation dosimetry, radiopharmaceuticals, and clinical application of radiopharmaceuticals in diagnosis and treatment. The course includes both didactic material as well as laboratory experience. LEC.

PHPR 616. Health Care Systems. 3 Hours.
This introductory course in nuclear pharmacy practice provides a basic understanding of radiation, radiation dosimetry, radiopharmaceuticals, and clinical application of radiopharmaceuticals in diagnosis and treatment. The course includes both didactic material as well as laboratory experience. LEC.
PHPR 620. Ethical, Legal, and Cultural Issues in Patient Care. 2 Hours.
This course provides an introduction to the fundamentals of law and ethics as they apply to the practice of pharmacy. Course sessions will focus on ethical expectations of the profession, principles and issues in medical and pharmacy ethics, and laws that govern medication dispensing. LEC.

PHPR 621. Pharmacy Law. 2 Hours.
A course developed to increase students' knowledge and understanding of laws that regulate the pharmacy profession. Prerequisite: Fifth year standing. LEC.

PHPR 630. Drug Information/Biostatistics and Med Lit Evaluation. 3 Hours.
An introduction to the principles of drug information analysis, storage, and retrieval as well as biostatistics as applied to understanding and interpreting biomedical literature. Advantages and disadvantages of several commercial and manual drug information systems will be considered. The course includes practical experiences in drug information services. The biostatistical emphasis of the course will be on the application of statistical tests commonly used and the interpretation of their results. Prerequisite: Fifth year standing. LEC.

PHPR 635. Problems in Pharmacy Practice. 1-5 Hours.
A course designed for the study of special topics in pharmacy practice. A research paper will be required. Prerequisite: Consent of instructor. IND.

PHPR 646. Pharmacotherapy I. 4 Hours.
A course dealing with the clinical applications of drug knowledge to patient care. Disease and drug knowledge will be applied to the design and monitoring of therapeutic treatment plans for patients. Incorporates three credit hours of lecture and one credit hour of case studies and off-campus professional experience. Prerequisite: Successful completion of Pharmacy Practice II (PHAR 502). LEC.

PHPR 647. Pharmacotherapy II. 4 Hours.
A course dealing with the clinical applications of drug knowledge to patient care. Disease and drug knowledge will be applied to the design and monitoring of therapeutic treatment plans for patients. Incorporates three credit hours of lecture and one credit hour of case studies and off-campus professional experience. This course is graded A,B,C,F. Prerequisite: Fifth year standing and successful completion of Pharmacotherapy I, PHPR 646. LEC.

PHPR 648. Pharmacotherapy III. 4 Hours.
A course dealing with the clinical applications of drug knowledge to patient care. Disease and drug knowledge will be applied to the design and monitoring of therapeutic treatment plans for patients. Incorporates three credit hours of lecture and one credit hour of case studies and off-campus professional experience. This course is graded A,B,C,F. Prerequisite: Fifth year standing and successful completion of Pharmacotherapy II, PHPR 647 with a C or above. LEC.

PHPR 670. Clinical Assessment. 2 Hours.
This laboratory course will allow students to develop clinical assessment skills necessary in the provision of pharmaceutical care to patients with a variety of disease states. Students will combine physical assessment skills, patient counseling skills, and pharmacotherapy knowledge and apply this information to patient care related activities in various clinical settings. Students will apply their skills using various practice models that include medication therapy management, collaborative drug therapy management, and interprofessional healthcare teams. The lab component will require students to meet for one hour between 1:00 to 5:00 PM on either Monday, Tuesday, or Wednesdays. Prerequisite: Students must be admitted to the School of Pharmacy to enroll in this class. A detailed schedule of lab meeting dates and times will be provided in the syllabus. LAB.

PHPR 845. Professional Communications. 2 Hours.
A course designed to give the graduate student a practical experience in areas of professional communications such as administrative proposals, grants, letters, memos, poster presentations, and written papers. The course focuses on the different kinds of communications required to relate to other health care professionals. Prerequisite: Consent of instructor. LEC.

PHPR 850. Introduction to Pharmacoepidemiology. 3 Hours.
Pharmacoepidemiology is the application of the principles of epidemiology to the study of medications and their effects on health. Evaluating a drug's effects commences when a chemical entity becomes a drug candidate, intensifies through clinical trials, and continues after products reach the market. These studies are critical for supporting the proper use of medications in terms of efficacy, effectiveness, and cost-effectiveness. This course provides a broad introduction to the principles of pharmacoepidemiology with a focus on applications in the medical literature. LEC.

PHPR 855. Economic Evaluation of Health Care Programs and Services. 3 Hours.
The course will provide students with an overview and appraisal of the "state-of-the-art" in the evaluation of health care programs and services (with a special emphasis on pharmaceutical programs, services, and products). The purpose of the course is to provide the student with the tools to conduct economic rather than general evaluation of health care programs and services. There will be some discussion of theoretical concepts, but the major emphasis will be on practical methodological issues in economic evaluation of pharmaceutical programs. The course integrates the perspectives of pharmaceutical and health care technology assessment, managed care, outcomes research, and public health. The main topics covered in the course include: cost, cost-minimization, cost-effectiveness, cost-utility, and cost-benefit analyses. LEC.

PHPR 860. Seminar in Pharmacy Practice. 1 Hour.
Research reports, reviews, and/or presentations on the current status of various aspects of pharmacy practice. Prerequisite: Consent of instructor. LEC.

PHPR 865. Advanced Institutional Pharmacy Services. 3 Hours.
A course dealing with the planning, justification, implementation, management, and coordination of a progressive, comprehensive institutional pharmacy service. Seminar presentations and case studies are used to analyze recent advances and to apply data from the research literature. Prerequisite: Consent of instructor. LEC.

PHPR 875. Health Care Delivery Systems. 3 Hours.
A continuation of PHPR 865 dealing with the current status of health care delivery systems and the impact of changes in this area on pharmacy practice. Prerequisite: PHPR 865 and consent of instructor. LEC.

PHPR 885. Human Resource Management in Institutional Pharmacy Practice. 3 Hours.
A course dealing with recruitment, training, motivation, monitoring of performance, and disciplining of personnel. Seminars, case studies, and role playing are used to apply the information to specific human resource management situations in institutional pharmacy practice. Prerequisite: PHPR 865 and consent of instructor. LEC.

PHPR 899. Research in Pharmacy Practice. 1-6 Hours.
Original investigation in the area of pharmacy practice. Prerequisite: Consent of instructor. RSH.