Bachelor of Science in Chemistry

Why study chemistry?

At KU Chemistry, we have faculty dedicated to mentoring both undergraduate and graduate students and to helping each student achieve scientific maturity. In addition to required classroom and laboratory courses, options exist for doing research in exciting areas of mainstream chemistry, including emerging fields of microfluidics, precision medicine and sustainable catalysis.

Undergraduate Program

The undergraduate program in the Department of Chemistry has two primary missions. One of these is to help its majors attain a mastery of the discipline in preparation for further study in chemistry or a chemical science, or for immediate employment in chemistry. The other is to provide an opportunity for students majoring in other disciplines to acquire a basic knowledge of the fundamental areas of chemistry.

The curriculum leading to the Bachelor of Science (B.S.) degree, a rigorous program certified by the American Chemical Society, consists of a full spectrum of chemistry courses as well as supporting courses in mathematics and physics, and is designed to prepare students for a professional career in chemistry. The Bachelor of Arts (B.A.) degree program, with fewer required courses, allows students to obtain a broader knowledge of areas outside of chemistry, or to tailor their chemistry program for specific or unique objectives. We also offer a Minor in chemistry for those seeking a secondary area of study.

Undergraduate Admission

Admission to KU

All students applying for admission must send high school and college transcripts to the Office of Admissions. Unless they are college transfer students with at least 24 hours of credit, prospective students must send ACT or SAT scores to the Office of Admissions. Prospective first-year students should be aware that KU has qualified admission requirements that all new first-year students must meet to be admitted. Consult the Office of Admissions (http://admissions.ku.edu) for application deadlines and specific admission requirements.

Visit the Office of International Student and Scholar Services (http://www.iss.ku.edu) for information about international admissions.

Students considering transferring to KU may see how their college-level course work will transfer on the Office of Admissions (http://credittransfer.ku.edu) website.

Admission to the College of Liberal Arts and Sciences

Admission to the College is a different process from admission to a major field. Some CLAS departments have admission requirements. See individual department/program sections for departmental admission requirements.

Chemistry Programs

The B.S. degree prepares students for graduate school and professional careers. The B.A. degree is for the student who wants to understand the fundamental principles of chemistry and to study a number of other fields. Both are based on a high school background that includes at least 1½ years of algebra and 1 year of geometry. High school courses in chemistry and physics are desirable but are not required. Many chemistry majors are preparing for medical school or for graduate study in chemistry and related fields. For graduate school, the common body of knowledge in the B.A. program is the minimum prerequisite. For premedical students, much of the knowledge will be important in their careers. Even more important, however, is the training in logical thinking, drawing conclusions from experimental observations, and digesting and understanding scientific information.

First- and Second-Year Preparation

Because study in chemistry requires preparation in mathematics and physics as well as a structured series of courses in chemistry, students should begin meeting major requirements in the first year. Students planning to major in chemistry should consult a chemistry department major advisor during their first semester to develop a 4-year plan for degree completion. It is particularly important to take CHEM 170 (or CHEM 130 or CHEM 190 & CHEM 191) and CHEM 175 (or CHEM 135 or CHEM 195 & CHEM 196) in the first year and CHEM 201, CHEM 330 (or CHEM 380) and CHEM 331 in the second year. For those seeking a B.S. degree it is also important to complete CHEM 335 (or CHEM 385) and CHEM 336 in the second year as well as their mathematics preparation (MATH 125, 126, 127 and CHEM 250) and physics preparation (PHSX 211 & PHSX 216, and PHSX 212 & PHSX 236) in the first 2 years.

Requirements for the B.S. Degree

General Education Requirements

All students must complete the KU Core.

Chemistry Prerequisite or Co-requisite Knowledge (27-28)

Majors must complete courses as specified in each of the following areas. Majors are advised to take honors courses when eligible. These hours do not contribute to the minimum number of hours required for the major.

Calculus I. Satisfied by one of the following: 4

| MATH 125 | Calculus I |
| or MATH 145 | Calculus I, Honors |

Calculus II. Satisfied by one of the following: 4

| MATH 126 | Calculus II |
| or MATH 146 | Calculus II, Honors |

Calculus III. Satisfied by one of the following: 4

| MATH 127 | Calculus III |
| or MATH 147 | Calculus III, Honors |

Mathematical Methods for the Chemical Sciences. Satisfied by: 3

| CHEM 250 | Mathematical Methods for the Chemical Sciences |

General Physics I. Satisfied by one of the following: 5

| PHSX 211 | General Physics I |
| & PHSX 216 | and General Physics I Laboratory |

| PHSX 213 | General Physics I Honors |

General Physics II. Satisfied by one of the following: 4

| PHSX 217 | General Physics II |
| & PHSX 218 | and General Physics II Laboratory |

| PHSX 219 | General Physics II Honors |

| MATH 147 | Calculus III, Honors |
Major Hours & Major GPA

KU Core Goal 6 is satisfied by either CHEM 636 Instrumental Methods of Analysis Laboratory, or 3 credit hours of CHEM 698 or CHEM 699. While completing all required courses, majors must also meet each of the following hour and grade-point average minimum standards:

Major Hours
Satisfied by 47 hours of major courses.

Major Hours in Residence
Satisfied by a minimum of 15 hours of KU resident credit in the major.

Major Junior/Senior Hours
Satisfied by a minimum of 35.5 hours from junior/senior courses (300+) in the major.

Major Junior/Senior Graduation GPA
Satisfied by a minimum of 35.5 hours from junior/senior courses (300+) in the major. GPA calculations include all junior/senior courses in the field of study including F’s and repeated courses. See the Semester/Cumulative GPA Calculator. (http://clas.ku.edu/undergrad/tools/gpa)

Biological Chemistry Option

This option is available to students interested in the biological applications of chemistry. The curriculum is compatible with many pre-health professions programs and prepares the student for graduate study or career opportunities.

General Education Requirements

All students must complete the KU Core.

Chemistry Prerequisite or Co-requisite Knowledge (24)

Majors must complete courses as specified in each of the following areas. Majors are advised to take honors courses when eligible. These hours do not contribute to the minimum number of hours required for the major.

Calculus I. Satisfied by one of the following: 4
- MATH 125 Calculus I
- or MATH 145 Calculus I, Honors

Calculus II. Satisfied by one of the following: 4
- MATH 126 Calculus II
- or MATH 146 Calculus II, Honors

Calculus III. Satisfied by one of the following: 4
- MATH 127 Calculus III
- or MATH 147 Calculus III, Honors

Mathematical Methods for the Chemical Sciences. Satisfied by: 3
- CHEM 250 Mathematical Methods for the Chemical Sciences

General Physics I. Satisfied by one of the following: 5
- PHSX 211 General Physics I
- & PHSX 216 and General Physics I Laboratory

General Physics II. Satisfied by one of the following: 4
- PHSX 212 General Physics II
- & PHSX 236 and General Physics II Laboratory

Chemistry Core Knowledge and Skills (47)

Majors must complete courses as indicated in the following areas:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHSX 212</td>
<td>General Physics II</td>
</tr>
<tr>
<td>& PHSX 236</td>
<td>and General Physics II Laboratory</td>
</tr>
<tr>
<td>PHSX 214</td>
<td>General Physics II Honors</td>
</tr>
<tr>
<td>BIOL 600</td>
<td>Introductory Biochemistry, Lectures</td>
</tr>
<tr>
<td>BIOL 636</td>
<td>Biochemistry I</td>
</tr>
<tr>
<td>CHEM 170</td>
<td>Chemistry for the Chemical Sciences I</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>CHEM 190</td>
<td>Foundations of Chemistry I, Honors</td>
</tr>
<tr>
<td>& CHEM 191</td>
<td>and Foundations of Chemistry I Laboratory, Honors</td>
</tr>
<tr>
<td>CHEM 175</td>
<td>Chemistry for the Chemical Sciences II</td>
</tr>
<tr>
<td>CHEM 135</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CHEM 195</td>
<td>Foundations of Chemistry II, Honors</td>
</tr>
<tr>
<td>& CHEM 196</td>
<td>and Foundations of Chemistry II Laboratory, Honors</td>
</tr>
<tr>
<td>CHEM 320</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>or CHEM 380</td>
<td>Organic Chemistry I, Honors</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Organic Chemistry I Laboratory</td>
</tr>
<tr>
<td>CHEM 335</td>
<td>Organic Chemistry II</td>
</tr>
<tr>
<td>or CHEM 385</td>
<td>Organic Chemistry II, Honors</td>
</tr>
<tr>
<td>CHEM 336</td>
<td>Organic Chemistry II Laboratory</td>
</tr>
<tr>
<td>CHEM 400</td>
<td>Analytical Chemistry</td>
</tr>
<tr>
<td>& CHEM 401</td>
<td>and Analytical Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 530</td>
<td>Physical Chemistry I</td>
</tr>
<tr>
<td>CHEM 535</td>
<td>Physical Chemistry II</td>
</tr>
<tr>
<td>& CHEM 537</td>
<td>and Physical Chemistry Laboratory</td>
</tr>
<tr>
<td>CHEM 635</td>
<td>Instrumental Methods of Analysis</td>
</tr>
<tr>
<td>CHEM 660</td>
<td>Systematic Inorganic Chemistry</td>
</tr>
<tr>
<td>CHEM 661</td>
<td>Advanced Inorganic Laboratory</td>
</tr>
<tr>
<td>CHEM 695</td>
<td>Seminar II</td>
</tr>
<tr>
<td>CHEM 636</td>
<td>Instrumental Methods of Analysis Laboratory</td>
</tr>
<tr>
<td>or CHEM 698</td>
<td>Undergraduate Research Problems</td>
</tr>
<tr>
<td>or CHEM 699</td>
<td>Undergraduate Honors Research</td>
</tr>
</tbody>
</table>
Chemistry for the Chemical Sciences I
Satisfied by one of the following:
- CHEM 170 Chemistry for the Chemical Sciences I
- CHEM 130 General Chemistry I
- CHEM 190 Foundations of Chemistry I, Honors
 & CHEM 191 Foundations of Chemistry I Laboratory, Honors

Chemistry for the Chemical Sciences II
Satisfied by one of the following:
- CHEM 175 Chemistry for the Chemical Sciences II
- CHEM 135 General Chemistry II
- CHEM 195 Foundations of Chemistry II, Honors
 & CHEM 196 Foundations of Chemistry II Laboratory, Honors

Seminar I
Satisfied by:
- CHEM 180 Seminar I

Laboratory Safety in the Chemical Sciences
Satisfied by:
- CHEM 201 Laboratory Safety in the Chemical Sciences

Organic Chemistry I (Lecture and Lab)
Satisfied by:
- CHEM 330 Organic Chemistry I
- or CHEM 380 Organic Chemistry I, Honors
- CHEM 331 Organic Chemistry I Laboratory

Organic Chemistry II (Lecture and Lab)
Satisfied by:
- CHEM 335 Organic Chemistry II
- or CHEM 385 Organic Chemistry II, Honors
- CHEM 336 Organic Chemistry II Laboratory

Analytical Chemistry (Lecture and Lab)
Satisfied by:
- CHEM 400 Analytical Chemistry
 & CHEM 401 Analytical Chemistry Laboratory

Physical Chemistry I
Satisfied by:
- CHEM 530 Physical Chemistry I

Physical Chemistry II (Lecture and Lab)
Satisfied by:
- CHEM 535 Physical Chemistry II
 & CHEM 537 Physical Chemistry Laboratory

Instrumental Methods of Analysis
Satisfied by:
- CHEM 635 Instrumental Methods of Analysis

Systematic Inorganic Chemistry
Satisfied by:
- CHEM 660 Systematic Inorganic Chemistry

Advanced Inorganic Laboratory
Satisfied by:
- CHEM 661 Advanced Inorganic Laboratory

Seminar II
Satisfied by:
- CHEM 695 Seminar II

Select one of the following: (Fulfills KU Core Goal 6)
- CHEM 636 Instrumental Methods of Analysis Laboratory
- or CHEM 698 Undergraduate Research Problems
- or CHEM 699 Undergraduate Honors Research

Biological Chemistry Core Knowledge and Skills (16)
Principles of Molecular and Cellular Biology
- BIOL 150 Principles of Molecular and Cellular Biology

Biochemistry
- BIOL 636 Biochemistry I
- BIOL 638 Biochemistry II

Biochemistry Laboratory
- BIOL 637 Introductory Biochemistry Laboratory

Biological Chemistry Required Electives
Majors choosing this option should select 1 elective (3 hours) from the following:
- BIOL 350 Principles of Genetics
- BIOL 400 Fundamentals of Microbiology
- BIOL 416 Cell Structure and Function

Major Hours & Major GPA
While completing all required courses, majors must also meet each of the following hour and grade-point average minimum standards:

Major Hours
Satisfied by 47 hours of major courses.

Major Hours in Residence
Satisfied by a minimum of 15 hours of KU resident credit in the major.

Major Junior/Senior Hours
Satisfied by a minimum of 35.5 hours from junior/senior courses (300+) in the major.

Major Junior/Senior Graduation GPA
Satisfied by a minimum of a 2.0 KU GPA in junior/senior courses (300+) in the major. GPA calculations include all junior/senior courses in the field of study including F's and repeated courses. See the Semester/Cumulative GPA Calculator (http://clas.ku.edu/undergrad/tools/gpa).

Chemical Physics Option
This option allows students to focus on the theoretical basis of chemistry. Students are prepared for graduate programs or employment.

General Education Requirements
All students must complete the KU Core.

Chemistry Prerequisite or Co-requisite Knowledge (29-30)
Majors must complete courses as specified in each of the following areas. Majors are advised to take honors courses when eligible. These hours do not contribute to the minimum number of hours required for the major.

Calculus I
Satisfied by one of the following:
- MATH 125 Calculus I
- or MATH 145 Calculus I, Honors

Calculus II
Satisfied by one of the following:
- MATH 126 Calculus II
- or MATH 146 Calculus II, Honors

Calculus III
Satisfied by one of the following:
- MATH 127 Calculus III
- or MATH 147 Calculus III, Honors

Differential Equations
Satisfied by one of the following:
- MATH 220 Applied Differential Equations
- MATH 320 Elementary Differential Equations

Elementary Linear Algebra
Satisfied by:
- MATH 290 Elementary Linear Algebra

General Physics I
Satisfied by one of the following:
- PHSX 211 General Physics I
 & PHSX 216 General Physics I Laboratory
- PHSX 213 General Physics I Honors
Bachelor of Science in Chemistry

Majors must complete courses as indicated in the following areas:

Chemistry Core Knowledge and Skills (47)

Majors must complete courses as indicated in the following areas:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 170</td>
<td>Chemistry for the Chemical Sciences I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 130</td>
<td>General Chemistry I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 190</td>
<td>Foundations of Chemistry I, Honors</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 195</td>
<td>Foundations of Chemistry II, Honors</td>
<td>5</td>
</tr>
<tr>
<td>Seminar I</td>
<td>Seminar I</td>
<td>0.5</td>
</tr>
<tr>
<td>CHEM 180</td>
<td>Laboratory Safety in the Chemical Sciences</td>
<td>1</td>
</tr>
<tr>
<td>Organic Chemistry I (Lecture and Lab)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CHEM 330</td>
<td>Organic Chemistry I</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 331</td>
<td>Organic Chemistry Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>Organic Chemistry II (Lecture and Lab)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CHEM 335</td>
<td>Organic Chemistry II</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 385</td>
<td>Organic Chemistry II, Honors</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 336</td>
<td>Organic Chemistry II Laboratory</td>
<td>5</td>
</tr>
<tr>
<td>Analytical Chemistry (Lecture and Lab)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>CHEM 400</td>
<td>Analytical Chemistry</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 530</td>
<td>Physical Chemistry I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 535</td>
<td>Physical Chemistry II</td>
<td>6</td>
</tr>
<tr>
<td>CHEM 635</td>
<td>Instrumental Methods of Analysis</td>
<td>2</td>
</tr>
<tr>
<td>Systematic Inorganic Chemistry</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM 660</td>
<td>Systematic Inorganic Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>Advanced Inorganic Laboratory</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CHEM 661</td>
<td>Advanced Inorganic Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>Seminar II</td>
<td>Seminar II</td>
<td>0.5</td>
</tr>
<tr>
<td>CHEM 695</td>
<td>Seminar II</td>
<td>3</td>
</tr>
</tbody>
</table>

Major Hours & Major GPA

While completing all required courses, majors must also meet each of the following hour and grade-point average minimum standards:

Major Hours

Satisfied by 47 hours of major courses.

Major Hours in Residence

Satisfied by a minimum of 15 hours of KU resident credit in the major.

Major Junior/Senior Hours

Satisfied by a minimum of 35.5 hours from junior/senior courses (300+) in the major.

Major Junior/Senior Graduation GPA

Satisfied by a minimum of a 2.0 KU GPA in junior/senior courses (300+) in the major. GPA calculations include all junior/senior courses in the field of study including F’s and repeated courses. See the Semester/Cumulative GPA Calculator (http://clas.ku.edu/undergrad/tools/gpa).

Departmental Honors

Undergraduates may apply for admission to the departmental honors program after completion of an analytical, organic, and physical chemistry course but no sooner than the beginning of the junior year. Highly motivated and superior B.A. and B.S. students are admitted to the honors program. Honors in chemistry are awarded to students who have been admitted to the program and who have completed the following requirements with superior performance, including an overall KU GPA of 3.25 and a major GPA of 3.5.

1. At least 2 semesters of CHEM 699 (4-8 hours total) resulting in a written thesis.
2. Evaluation and approval of the thesis by a faculty advisory committee.
3. Oral presentation of the thesis results at a special departmental seminar or other approved forum.

For an application form and further information, consult the department office.