Pharmaceutical Chemistry Graduate Programs

Pharmaceutical Chemistry is a broad discipline that integrates diverse areas of science ranging from biological to chemical sciences. Students in the program will become familiar with aspects of physical, organic and analytical chemistry, chemical kinetics, biopharmaceutics and pharmacokinetics, and biotechnology including vaccines. To address these needs, the department offers a series of eight (8) core courses designed to hone the student’s skills in these topical areas, which are considered essential in understanding problems of biological, biophysical and chemical processes at the molecular level. Refer to the links Coursework Research Overview and Department Graduate Student Handbook for details. Every student entering the program is expected to complete the core courses during the first three semesters of graduate study. Students can choose from a variety of elective courses that allow them to gain knowledge and skills in areas specific to individual research project interests. The department places emphasis on excellence in research making every effort to ensure that students can maximize efforts on their research projects toward earning the Ph.D. degree in a timely fashion.

Currently, the department has 16 faculty members, about 35 graduate students, and a similar number of postdoctoral fellows and research scientists. The department is recognized nationally and internationally, with most graduates and researchers going on to successful careers in the pharmaceutical industry, government positions and academia. The department serves as the home department for the long-standing NIH training grant in pharmaceutical biotechnology.

Facilities

The department is located on KU’s west campus in the Simons Biosciences Research Laboratories and the Multidisciplinary Research Building (MRB). Recently renovated and expanded, Simons is a modern, well-equipped research facility. MRB houses researchers from the pharmaceutical chemistry and a variety of other disciplines, thus encouraging interdisciplinary interaction and collaboration. The department is well equipped for biochemical, biophysical and chemical research, having state-of-the-art spectroscopic, physical characterization, chromatographic and mass spectrometry instrumentation. Within the department there are facilities for cell culture, several advanced fluorescence microscopes, and numerous components and software for proteomic analysis. Furthermore, the faculty has established the Macromolecule and Vaccine Stabilization Center (MVSC) and Kansas Vaccine Institute (KVI), which contain an extensive array of instrumentation for the characterization of both small and macromolecules. Examples of analytical instrumentation include circular dichroism spectrophotometers, FTIR, capillary LCQ-ToF mass spectrometry, and particulate analysis. Additionally the university offers state of the art equipment and service facilities to assist with many aspects of research. For example, the Molecular Structures Group (MSG) is a campus-wide facility encompassing NMR, MS, X-ray Crystallography, Protein Production, Fragment-based Drug Discovery, and Molecular Graphics and Modeling Laboratories available to all campus members for a nominal fee. Near the Simons building, the structural biology wing of the MSG houses an 800-mHz NMR along with many other instruments and services.

Courses

PHCH 510. Emerging Trends in Pharmaceutical Chemistry I. 1 Hour. This elective class will explore emerging areas of research currently impacting the pharmaceutical industry. Potential topics include; biological as therapeutics, drug targeting, prodrugs, nanotechnology, biological barriers, gene therapy, transporters, vaccines, intracellular drug trafficking, controlled release drug delivery, cancer therapy, analytical biotechnology and many others. The class will be team taught by PHCH faculty and guest speakers. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHCH 512. Road Map to the Development and Regulatory Approval of a New Drug. 1 Hour. This special topics course will cover key steps in developing and bringing a new drug through pharmaceutical development and regulatory approval and into commercial use. Development of both traditional small-molecule chemical drugs and biotechnology-based protein drugs will be discussed. Example topics include: (1) how does a drug candidate move from its discovery at the lab bench into clinical trials? (2) what are the key hurdles in developing a new medicine that can be produced at large-scale in a manufacturing facility? (3) why are patents and venture capital so important in drug development? Guest lecturers will provide real world perspectives including case studies. This is two-hour class that meets 8 times during the semester. Prerequisite: 1st, 2nd or 3rd professional year standing in the School of Pharmacy. LEC.

PHCH 514. Scientific Writing for the Health Professional. 2 Hours. Communicating research plans and experimental findings is a critical skill for health care professionals working in a research environment, and successful communication depends on clarity of thought and careful use of language. This course is intended for 3rd professional (P3) year students who are seeking residency and will need to write research proposals and abstracts, as well as prepare effective posters and presentations. It is an intensive course with multiple writing assignments. Students are expected to participate fully, and individual feedback and guidance on writing will be provided by the instructor. Graded on a satisfactory/fail. Prerequisite: 3rd professional (P3) year students who plan to complete post-doctoral residency training. LEC.
PHCH 515. Oral Presentations for the Health Professional. 1 Hour.
Communicating research plans and experimental findings is a critical skill for health care professionals working in a research environment, and a successful oral presentation depends on clear thinking and careful slide design to tell a story. This course is intended for 3rd year professional (P3) pharmacy students who are seeking residency and will need to prepare effective presentations. It is an intensive course with successive slide drafts and presentations. Students are expected to participate fully, and individual feedback and guidance on presentations will be provided by the other students and by the instructor. Graded on a satisfactory/fail basis. Prerequisite: PHCH 514. LEC.

PHCH 517. Pharmacy Calculations. 2 Hours.
An introduction to the mathematics involved in filling prescriptions and in manufacturing pharmaceuticals. Includes an introduction to standard prescription notation and familiarization with pharmaceutical weights and measures. LEC.

PHCH 518. Physical-Chemical Principles of Solution Dosage Forms. 3 Hours.
Physical properties of pharmaceutical solutions and their physiological compatibility will be discussed (intermolecular interactions, energetics, colligative properties, isotonicity, pH, buffers and drug solubility). Kinetics and mechanisms of drug degradation in solution will also be introduced. Prerequisite: PHCH 517. LEC.

PHCH 605. Vaccines. 1 Hour.
Vaccines are currently the most powerful therapeutic approach available for infectious disease and promise to become of increasing importance for a wide variety of other pathologies including cancer. This course discusses the immunological basis of vaccinology, types of vaccines currently available and in development and the process by which vaccines are made from the basic research stage through their pharmaceutical development and marketing. Ethical aspects of vaccine use will also be considered. LEC.

PHCH 625. Pharmacokinetics. 3 Hours.
A discussion of the basic concepts, and some clinical applications, of pharmacokinetics, clearance concepts, extravascular dosing, and the use of pharmacokinetics in dosage regimen design and adjustment. Prerequisite: PHCH 517 and PHCH 518. LEC.

PHCH 626. Biopharmaceutics and Drug Delivery. 3 Hours.
A study of biological barriers to drug delivery, conventional dosage forms, and new and future drug delivery strategies. Prerequisite: PHCH 517, PHCH 518, and PHCH 625. LEC.

PHCH 667. Introduction to Clinical Chemistry. 2 Hours.
A lecture-discussion course concerned with identification of the contents of physiological fluids, changes in physiological fluid content induced by disease and drugs, and therapeutic drug monitoring: case studies are presented. Prerequisite: Must be accepted to the Pharmacy Program. LEC.

PHCH 690. Undergraduate Research in Pharmaceutical Chemistry. 1-5 Hours.
Student will be assigned a suitable research project in the area of pharmaceutical analysis or pharmaceutics. Prerequisite: Consent of instructor. IND.

PHCH 693. Clinical Pharmacokinetics. 2 Hours.
This course presents discussions on physiological and disease state variables in pharmacokinetics for selected drugs and drug classes, and instructs students in the use of physiological and disease state pharmacokinetic information to develop individualized therapeutic regimens. Prerequisite: PHCH 625 and PHCH 626. LEC.

PHCH 694. Problems in Pharmaceutical Chemistry. 1-5 Hours.
A student will be assigned a suitable research project in an area of pharmaceutical analysis or pharmaceutics. This course is offered regularly by the Department of Pharmaceutical Chemistry to meet the special needs of selected students, usually for one of the following two situations: (1) This course may be taken when a student has a special interest in a problem or area of limited scope and desires to pursue that study in depth under supervision of a member of the faculty. (2) This course is sometimes used as a remedial class to provide a mechanism of intensive review and study in an area of weakness. Prerequisite: Consent of instructor. IND.

PHCH 700. Experimental Methods in Pharmaceutical Chemistry. 1-5 Hours.
Discussions, lectures, and laboratory work designed to acquaint and provide hands on experiences to advanced undergraduate and graduate students with experimental design, methods, and approaches relevant to modern research in pharmaceutical chemistry. Prerequisite: Consent of instructor. LEC.

PHCH 705. Writing and Communicating Science for Graduate Students. 3 Hours.
Communicating research proposals and experimental findings is a critical skill for scientists. Successful communication depends on clarity of thought and careful use of language. This course will use class discussions with examples and homework assignments to help prepare the graduate student to successfully communicate in both academia and industry settings. Graded on a satisfactory/unsatisfactory basis. Prerequisite: Graduate standing in PHCH or consent of the instructor. LEC.

PHCH 706. Writing and Communicating Science for Graduate Students. 3 Hours.
Communicating research proposals and experimental findings is a critical skill for scientists. Successful communication depends on clarity of thought and careful use of language. This course will use class discussions with examples and homework assignments to help prepare the graduate student to successfully communicate in both academia and industry settings. Graded on a satisfactory/unsatisfactory basis. Prerequisite: This course is only open to distance education students. LEC.

PHCH 712. Road Map to the Development and Regulatory Approval of a New Drug. 1 Hour.
This special topics course will cover key steps in developing and bringing a new drug through pharmaceutical development and regulatory approval and into commercial use. Development of both traditional small-molecule chemical drugs and biotechnology-based protein drugs will be discussed. Example topics include: (1) how does a drug candidate move from its discovery at the lab bench into clinical trials? (2) what are the key hurdles in developing a new medicine that can be produced at large-scale in a manufacturing facility? (3) why are patents and venture capital so important in drug development? Guest lecturers will provide real world perspectives including case studies. This is a two-hour class that meets 8 times during the semester. Prerequisite: Graduate standing in Pharmaceutical Chemistry or a trainee of the NIH Biotech Training Grant. LEC.

PHCH 715. Drug Delivery. 3 Hours.
The course will survey the latest technology for delivering pharmaceuticals and biologicals to reduce side effects and enhance drug efficacy. The course will survey the latest research in this area and examine more classical delivery methods. A qualitative and quantitative understanding of drug delivery practice and theory is the goal. Prerequisite: Master's or PhD candidate in Engineering, Chemistry,
Medicinal Chemistry, or Pharmaceutical Chemistry (by appointment for seniors or graduate students in departments not listed). LEC.

PHCH 716. Drug Delivery. 3 Hours.
The course will survey the latest technology for delivering pharmaceuticals and biologicals to reduce side effects and enhance drug efficacy. The course will survey the latest research in this area and examine more classical delivery methods. A qualitative and quantitative understanding of drug delivery practice and theory is the goal. Prerequisite: This course is only open to distance education students. LEC.

PHCH 718. Physical-Chemical Principles of Solution Dosage Forms. 3 Hours.
Physical properties of pharmaceutical solutions and their physiological compatibility will be discussed (intermolecular interactions, energetics, colligative properties, isotonicity, pH, buffers and drug solubility). Kinetics and mechanisms of drug degradation in solution will also be introduced. Prerequisite: Graduate standing. LEC.

PHCH 719. Physical-Chemical Principles of Solution Dosage Forms. 3 Hours.
Physical properties of pharmaceutical solutions and their physiological compatibility will be discussed (intermolecular interactions, energetics, colligative properties, isotonicity, pH, buffers and drug solubility). Kinetics and mechanisms of drug degradation in solution will also be introduced. This course is only open to distance education students. Prerequisite: Graduate standing. LEC.

PHCH 725. Molecular Cell Biology. 3 Hours.
Fundamentals and advanced concepts in cell biology and the molecular interactions responsible for cell functions, homeostasis and disease will be presented. Current analytical methods for examining cells and their molecular components will be discussed. Emphasis will be placed on the chemical and physical properties of individual proteins, nucleic acids and lipids and their assembly into cellular and subcellular structures. (Same as CPE 725.) Prerequisite: Graduate standing or consent of instructor. LEC.

PHCH 730. Biopharmaceutics and Pharmacokinetics. 3 Hours.
A quantitative treatment of the processes involved with drug absorption, distribution, metabolism, and excretion in living systems. LEC.

PHCH 731. Biopharmaceutics and Pharmacokinetics. 3 Hours.
A quantitative treatment of the processes involved with drug absorption, distribution, metabolism, and excretion in living systems. This course open only to distance education students. LEC.

PHCH 744. Organic Chemistry for Pharmaceutical Scientists. 3 Hours.
A consideration of the structural features and driving forces that control the course of chemical reactions. Topics will include functional group chemistry: electronic structure, acid/base properties: molecular structure and properties (dipole, strain, and steric effects, inductive and resonance effects); dynamics of reactions (the major organic reaction mechanism, kinetics, energy profiles, isotope effects, linear free energy relationships), solvent effects, stereochemistry and conformation, an introduction to orbital symmetry control; basic thermodynamic and kinetic concepts; and an overview of important classes of mechanisms. This course is only open to distance education students. Prerequisite: CHEM 624 and CHEM 626. LEC.

PHCH 775. Chemistry of the Nervous System. 3 Hours.
A detailed study of the molecular aspects of nerve transmission will be covered with special emphasis on the uptake, storage, release, biosynthesis, and metabolism of specific neurotransmitters. Drugs affecting these processes and current research on receptor isolation and receptor mechanisms will be discussed from a chemical viewpoint. (Same as PTX 775, BIOL 775, CHEM 775, MDCM 775 and NURO 775.) Prerequisite: BIOL 600 or equivalent. LEC.

PHCH 801. Issues in Scientific Integrity. 1 Hour.
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis on practical topics of special importance in molecular-level research in the chemical, biological, and pharmaceutical sciences. Topics will include the nature of ethics, the scientist in the laboratory, the scientist as author, grantee, reviewer, employer/employee, teacher/student, and citizen. Discussions will focus on case histories. Graded on a satisfactory/unsatisfactory basis. (Same as MDCM 801, NURO 801, PTX 801 and PHCH 802.) LEC.

PHCH 802. Issues of Scientific Integrity. 1 Hour.
Lectures and discussion on ethical issues in the conduct of a scientific career, with emphasis on practical topics of special importance in molecular-level research in the chemical, biological, and pharmaceutical sciences. Topics will include the nature of ethics, the scientist in the laboratory, as author, grantee, reviewer, employer/employee, teacher/student, and citizen. Discussions will focus on case histories. Graded on a satisfactory/unsatisfactory basis. This course is open only to distance education students. (Same as PHCH 801, MDCM 801, NURO 801, and PTX 801.) LEC.

PHCH 816. Careers in the Biomedical Sciences. 1 Hour.
Advanced course examining career options open to PhD scientists in the biomedical sciences, and providing preparation for the different career paths. Extensive student/faculty interaction is emphasized utilizing lectures, class discussion of assigned readings, and oral presentations. This course will be graded satisfactory/unsatisfactory. (Same as BIOL 816, CHEM 816 and MDCM 816.) Prerequisite: Permission of instructor. SEM.

PHCH 826. Molecular Cell Biology. 3 Hours.
Fundamental and advanced concepts in cell biology and the molecular interactions responsible for cell function, homeostasis and disease will be presented. Current analytical methods for examining cells and their molecular components will be discussed. Emphasis will be placed on the chemical and physical properties of individual proteins, nucleic acids and lipids and their assembly into cellular and subcellular structures. This course is only open to distance education students. LEC.

PHCH 850. Solid State Stability and Formulation. 2 Hours.
This course is designed to provide an understanding of the formulation and stability of small and large drug candidates in the solid state. The first two-thirds of the course will focus on small molecules, with the last third being devoted to proteins. Prerequisite: Graduate standing in PHCH or consent of the instructor. LEC.

PHCH 851. Solid State Stability and Formulation. 2 Hours.
This course is designed to provide an understanding of the formulation and stability of small and large drug candidates in the solid state. The first two-thirds of the course will focus on small molecules, with the last third being devoted to proteins. This course is open only to distance education students. Prerequisite: Graduate standing in Pharmaceutical Chemistry or consent of the instructor. LEC.

PHCH 860. Principles and Practice of Chemical Biology. 3 Hours.
A survey of topics investigated by chemical biology methods including: transcription and translation, cell signaling, genetic and genomics, biochemical pathways, macromolecular structure, and the biosynthesis of peptides, carbohydrates, natural products, and nucleic acids. Concepts of thermodynamics and kinetics, bioconjugations and bioorthogonal chemistry will also be presented. (Same as BIOL 860, CHEM 860 and MDCM 860.) Prerequisite: Permission of instructor. LEC.
PHCH 862. Physical Chemistry of Solutions, Solids and Surfaces. 3 Hours.
A course on equilibria in aqueous and non-aqueous systems with emphasis on solutions of interest to pharmaceutical technology. Included are association-dissociation equilibria, complexation, protein binding calculation of species concentrations, estimation of solubility and ionization constants. Methods for the determination of chemical potential in solution are presented. LEC.

PHCH 863. Physical Chemistry of Solutions, Solids and Surfaces. 3 Hours.
A course on equilibria in aqueous and non-aqueous systems with emphasis on solutions of interest to pharmaceutical technology. Included are association-dissociation equilibria, complexation, protein binding calculation of species concentrations, estimation of solubility and ionization constants. Methods for the determination of chemical potential in solution are presented. This course is open only to distance education students. LEC.

PHCH 864. Pharmaceutical Analysis. 4 Hours.
This course is intended to be a comprehensive treatment of contemporary techniques used to validate analytical methods for the determination of drugs in the bulk form, pharmaceutical formulations, biological samples and other relevant media. The emphasis will be on chromatographic techniques reflecting the preeminent position that those techniques occupy in the field of pharmaceutical and biomedical analysis. Prerequisite: Previous or concurrent enrollment in PHCH 684. LEC.

PHCH 865. Pharmaceutical Analysis. 4 Hours.
Advanced course on pharmaceutical analysis. This course is only open to distance education students. LEC.

PHCH 870. Advanced Pharmaceutical Biotechnology. 4 Hours.
A course designed to emphasize the important facets of recombinant proteins and vaccines as pharmaceutical agents. Basics of protein structure and analysis will be introduced, and methods for production, isolation, and purification of recombinant proteins will be described. Potential chemical and physical degradation processes and strategies for circumventing these difficulties will be discussed. An overview of the development and formulation of vaccines and their immunological basis will be presented. Prerequisite: BIOL 600 or consent of instructor. LEC.

PHCH 871. Advanced Pharmaceutical Biotechnology. 4 Hours.
A course designed to emphasize the important facets of recombinant proteins and vaccines as pharmaceutical agents. Basics of protein structure and analysis will be introduced, and methods for production, isolation, and purification of recombinant proteins will be described. Potential chemical and physical degradation processes and strategies for circumventing these difficulties will be discussed. This course is only open to distance education students. An overview of the development and formulation of vaccines and their immunological basis will be presented. Prerequisite: BIOL 600 or consent of instructor. LEC.

PHCH 895. Research in Pharmaceutical Chemistry. 1-11 Hours.
Advanced level research in collaboration with a faculty member in pharmaceutical chemistry or related areas. This course is limited to students who are doing research, but not necessarily working toward either a master's or a doctoral degree. RSH.

PHCH 898. Master’s Thesis. 1-10 Hours.
Master’s Thesis. This course is open only to distance education students. THE.

PHCH 899. Master’s Thesis. 1-11 Hours.
Graded on a Satisfactory/Fail basis. THE.